期刊文献+

农作物杂交与物理解

Crop Hybridization and Physical Interpretation
下载PDF
导出
摘要 农作物的杂交是农作物基因排数据的杂交变成新的排数据基因的杂交。农作物和农作物基因是排数据构成的,基因的排列组合构成农作物的品质。物理规律随坐标变量而变化,坐标变量要引入合理。经典力学的永恒量为力和质量,相对论的永恒量为能量和质量。通过光速不变性的深入思考可以得到一个圆满的物理定理,世界的能量与质量和光速相对。 Hybridization of crops is the hybridization of crop gene row data.Crop and crop genes are composed of rows of data.The arrangement of genes constitutes the quality of the crops.Physical laws vary with coordinate variables,and coordinate variables must be introduced reasonably.The eternal variate of classical mechanics is force and quality,and the eternal variate of relativity is energy and quality.The thoughtful thinking of the invariance of the speed of light can lead to a complete physics theorem.The world′s energy and quality are relative to the speed of light.
作者 李路 LI Lu(Institute of Agricultural Information,Chinese Academy of Agricultural Sciences,Beijing 100081)
出处 《现代农业科技》 2018年第20期289-290,共2页 Modern Agricultural Science and Technology
关键词 排数据 杂交 物理规律 永恒量 row data hybridization physical laws eternal variate
  • 相关文献

参考文献1

二级参考文献11

  • 1Li Tatsien,Qin T. Physics and parital differential equations[M].Beijing:Higher Eudcation Press,2005.183-196.
  • 2Guo Yan,Tahhvildar-Zadeh A S. Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics[J].Cntemp Math,2009.151-161.
  • 3G-eng Yangcai,Li Yaohun. Non-relativistic global limits of entropy solutions to the extremely relativistic Euler equations[J].{H}ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,2010,(02):201-220.
  • 4Li Yachun,Geng Yongcai. Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations[J].{H}ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,2006,(06):960-983.
  • 5Geng Yongcai,Li Yachun. Special relativistic effects revealed in the Riemann problem for three-dimensional relativistic Euler equations[J].{H}ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,2011,(02):281-304.
  • 6Hao Xingwen,Li Yachun. Non-relativistic global limits of entropy solutions to the Cauchy problem of the three dimensional relativistic Euler equations with spherical symmetry[J].{H}COMMUNICATIONS ON PURE AND APPLIED ANALYSIS,2010,(02):365-386.
  • 7Hsu C H,Lin S,Makino T. On spherically symmetric solutions of the relativistic Euler equation[J].J Diffrential Equations,2004,(01):1-24.
  • 8Mizohata K. Global solutions to the relati-vistic Euler equation with spherical symmetry[J].Japan J Indust Appl Math,1997,(01):125-157.
  • 9Lefloch P,Ukai S. A symmetrization of the relativistic Euler equations in sevaral spatial variables[J].Kinet Relat Modles,2009.275-292.
  • 10Makino T,Ukai S. Local smooth solutions of the relativistic Euler equation,Ⅱ[J].{H}Kodai Math J,1995,(02):365-375.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部