摘要
为研究二维带p-Laplace算子的拟线性方程解的对称性,利用Liouville型定理,在u∈L~∞(R^2)且_1u> 0的假设下,证明u是一维对称解.该结果推广了一类二维拟线性方程解的对称性质.
In order to study the symmetric properties of the solutions of the two-dimensional quasilinear equations with p-Laplacian operator,this paper,through Liouville s theorem,proves that u is the one-dimensional symmetric solution under the assumptions u∈L^∞(R^2)and 1 u>0.The results generalize the symmetric properties of the solutions of some two dimensional quasilinear equations.
作者
杜乐乐
Du Lele(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua,Zhejiang 321004)
出处
《嘉兴学院学报》
2018年第6期33-36,共4页
Journal of Jiaxing University
基金
国家自然科学基金资助项目(11571317)