期刊文献+

一种用于柔性飞机风洞静气动弹性试验的数据处理方法

Data Processing Method for Flexible Airplane Wind Tunnel Static Aeroelastic Test
下载PDF
导出
摘要 根据大展弦比飞机机翼弯曲变形大、配平试验风速变化范围广等特点,在已有数据处理方式基础上,结合地面加载试验,基于数据聚类思想建立了一种新的快速数据处理方法。通过对某大展弦比柔性飞机风洞配平试验数据聚类分析,快速得到各风速下机翼的应变量,并与地面加载试验拟合函数进行插值,使得在风洞试验过程中可以对柔性机翼载荷进行快速计算,从而更好地指导不同车次风洞试验,提高试验的安全性与效率。与风洞天平试验数据处理结果的对比也表明:改进的聚类方法处理结果准确,对高频率的数据采集结果有较高效率和可靠性。 According to the characteristics of high aspect ratio wing’s bending deformation and wind tunnel test data,based on the existing data processing methods,a new fast data analysis method was established by adding ground loading test and data clustering idea.By analyzing the test data of wind tunnels for a large aspect ratio aircraft and interpolating with the ground loading test fitting function,the flexible wing load can be monitored during the wind tunnel tests,so as to better guide the following tests.The safety and efficiency of the test is also improved.The comparison with the wind tunnel balance data shows that the improved method is accurate,and has high efficiency and feasibility for high frequency data acquisition.
作者 吕计男 王昕江 许云涛 刘燚 杜鹏飞 LYU Jinan;WANG Xinjiang;XU Yuntao;LIU Yi;DU Pengfei(China Academy of Aerospace Aerodynamics,Beijing 100074,China;Beijing Institute of Mechanical and Electrical Engineering,Beijing 100074,China;Department of Arms Engineering of PLA,Beijing 100072,Chin)
出处 《兵器装备工程学报》 CAS 北大核心 2018年第10期6-10,共5页 Journal of Ordnance Equipment Engineering
关键词 静气动弹性 聚类分析 风洞试验 大展弦比 static aeroelasticity test K-Means cluster analysis wind tunnel test high aspect ratio
  • 相关文献

参考文献8

二级参考文献41

  • 1李鹤,姚红良,闻邦椿,应怀樵.基于小波变换方法的高层建筑模态参数辨识[J].振动与冲击,2005,24(5):96-98. 被引量:13
  • 2徐敏,安效民,陈士橹.一种CFD/CSD耦合计算方法[J].航空学报,2006,27(1):33-37. 被引量:55
  • 3陈良维.数据挖掘中聚类算法研究[J].微计算机信息,2006(07X):209-211. 被引量:32
  • 4P. S. Bradley and U. M. Fayyad, "Refining initial points for K- means clustering", Proceedings of the Fifteenth International Conference on Machine Learning (ICML98), 1998, pp. 91-99.
  • 5The Analysis of a Simple K-Means Algorithm. T. Kanungo, D. M. Mount, N.S. Netanyahu, C. Piatko, R. Silverman and A.Y. Wu. 2000.
  • 6R. Kannan, S. Vempala, and Adrian Vetta, "On Clusterings: Good, Bad, and Spectral", Proc. of the 41st Foundations of Computer Science, Redondo Beach, 2000.
  • 7S. Kantabutra, Efficient Representation of Cluster Structure in Large Data Sets, Ph.D. Thesis, Tufts University, Medford, MA, September 2001.
  • 8CHEDRIK V V, ISHMURATOV F Z, ZICHENKOV M C. Optimization approach to design of aeroelastic dy namically-scaled models of aircraft[R]. AIAA 2004 4642.
  • 9JENNIFER Heeg, CHARLES V Spain, RIVERA J A. Wind tunnel to atmospheric mapping {or static aeroelas- tic scaling[R]. AIAA 2004 2044.
  • 10JENNIFER Heeg, CHARLES V Spain, JAMES R Flo rance. Experimental results from the active aeroelastic wing wind tunnel test program[R]. AIAA 2005-2234.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部