期刊文献+

结合Parzen分类器和卷积神经网络的图像识别 被引量:1

Image recognition on parzen classifier and convolution neural network
下载PDF
导出
摘要 针对传统卷积神经网络(Convolutional Neural Networks,CNN)中所用Softmax分类器方法无法有效兼顾识别准确率及识别效率的问题,提出采用Parzen分类器结合CNN的方法进行图像识别,特征提取方面,采用CNN提取图像的特征;识别算法方面,借鉴传统分类器的优势,提出采用Parzen分类器方法进行图像识别。使用MNIST、Pet数据集对该方法进行了测试。实验结果表明,Parzen分类器能有效地进行图像分类,与传统Softmax分类方法相比,在MNIST上的识别准确率提高了0. 73%,识别效率提高了20. 14%;在Pet Dataset上的识别准确率提高了1. 14%,识别效率提高了12. 94%。本算法具有较好的泛化性能。 In view of the problem that the Softmax classifier method used in the traditional convolution neural network(CNN)can not effectively take into account the accuracy and efficiency of recognition,it is proposed to use Parzen classifier and CNN.Image recognition,feature extraction,Using CNN to extract the characteristics of the image;With reference to the advantages of traditional classifier,Parzen classifier method is proposed for image recognition.The method was tested using MNIST,Pet datasets.The experimental results show that Parzen classifiers can effectively classify images.Compared with the traditional Softmax classification method,the recognition accuracy on MNIST has increased by 0.73%,and the identification efficiency has increased by 20.14%.The accuracy of the identification on the Pet Dataset increased by 1.14%and the identification efficiency increased by 12.94%.The algorithm has good generalization performance.
作者 刘紫燕 何平 LIU Ziyan;HE Ping(College of big data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《电视技术》 2018年第11期16-21,120,共7页 Video Engineering
基金 贵州省科学技术基金项目(黔科合基础[2016]1054) 贵州省联合资金项目(黔科合LH字[2017]7226号) 贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788)
关键词 图像识别 卷积神经网络 Parzen分类器 Image Recognition Convolutional Neural Network Parzen Classifier
  • 相关文献

参考文献5

二级参考文献130

  • 1孙凤杰,崔维新,张晋保,张旭东,肖学东.远程数字视频监控与图像识别技术在电力系统中的应用[J].电网技术,2005,29(5):81-84. 被引量:71
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 3BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 4VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 5LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 6TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 7SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 8TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 9JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 10LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.

共引文献493

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部