期刊文献+

基于运动观察EEG的运动方向解析

Analysis of motion direction of EEG based on motion observation
下载PDF
导出
摘要 与运动想象相比,运动观察的脑电信号没有被试主动思维参与,解析难点在于其信号幅值更弱且难以获取。实验针对运动观察中的方向判别进行了研究,以获取运动观察过程脑电特征明显频段作为切入点,利用运动观察眼动追踪信号确定有效观察任务,绘制脑地形图序列,定位激活的脑区,选出关联通道;然后结合运动观察EEG在特定频段时域上的能量特征较明显的特性,改进CSP算法,基于信号能量特征,利用SVM进行分类识别。实验得到运动方向解析平均80%以上分类准确率,最高在0~4 Hz频段上,达到了86. 28%,实现了运动观察虚拟小车左右转的解析与识别,为复杂运动观察任务EEG的解析与识别提供了有效的方法。 Compared with motion imagination,EEG signal of motion observation was not involved in active thinking,and the difficulty of analysis was that the signal amplitude was weaker and more difficult to obtain.This paper aimed at analyzing the direction in motion observation,took the obvious frequency band of the EEG characteristic of the motion observation process as the entry point,first determined the effective observation task by the motion observation eye tracking signal,then drew the brain topographic map sequence,located the activated brain area,selected the associated channel,and next improved CSP algorithm according to obvious energy characteristics of EEG in the specific frequency band,finally used the SVM to classify and identify based on the signal energy characteristics.The experiment shows that the accuracy of motion resolution about direction is more than 80%,and the highest accuracy is 86.28%in the range of 0~4 Hz,which realizes the analysis and identification of the left and right turn of the virtual car,and provides an effective method for the analysis and identification of complex task of motion observation EEG.
作者 逯鹏 谢全威 李新建 胡玉霞 张景景 刘豪杰 Lu Peng;Xie Quanwei;Li Xinjian;Hu Yuxia;Zhang Jingjing;Liu Haojie(School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China;Collaborative Innovation Center of Internet Medical&Healthcare in Henan,Zhengzhou 450001,China;Henan Key Laboratory of Brain Science&Brian-Computer Interface Technology,Zhengzhou 450001,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第11期3318-3321,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60841004 60971110 61172152 61473265) 河南省科技攻关项目(172102310393) 河南省高校科技创新团队支持计划资助项目(17IRTSTHN013) 河南省高校重点支持基金资助项目(18A520011)
关键词 EEG 运动观察 虚拟小车 改进CSP 能量特征 EEG motion observation virtual car improved CSP energy characteristics
  • 相关文献

参考文献4

二级参考文献81

  • 1LuckSJ.事件相关电位基础.上海:华东师范大学出版社.2009:106.
  • 2PHINYOMARK A, NUIDOD A, PHUKPATTARANONT P, et al. Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification [ J ]. Electronics and Electrical Engi- neering,2012,122 (6) :27-32.
  • 3HAN H, JO S. sEMG pattern classification using hierarchical Bayes- ian model[ C ]//Proc of the 35th, Annual International Conference on Engineering in Medicine and Biology Society. 2013 : 6647- 6650.
  • 4PHINYOMARK A, LIMSAKUL C, PHUKPATTARANONT P. Appli-cation of wavelet analysis in EMG feature extraction for pattern classi- fication[ J]. Measurement Science Review,2011,11 (2) :45-52.
  • 5DIAB M O, MOSLEM B, KHALIL M, et al. Classification of uterine EMG signals by using normalized wavelet packet energy[ C]//Proc of the 16th IEEE Mediterranean Electrotechnical Conference. 2012:335- 338.
  • 6KAMAVUAKO E, FARINA D, JENSEN W. Use of sample entropy extracted from intramuscular EMG signals for the estimation of force [ C ]//Proc of the 15 th Nordic-Baltic Conference on Biomedical Engi- neering and Medical Physics. Berlin : Springer,2011 : 125-128.
  • 7ZHENG Xin, CHEN Wan-zhong, CUI Bing-yi. Multi-gradient sur- face electromyography (SEMG) movement feature recognition based on wavelet packet analysis and support vector machine (SVM) [ C ]// Proc of the 5th International Conference on Bioinformatics and Bio- medical Engineering. 2011 : 1-4.
  • 8GALIANA-MERINO J J, RUIZ-FERNANDEZ D, MARTINEZ-ES- PLA J J. Power line interference filtering on surface electromyography based on the stationary wavelet packet transform [ J ]. Computer Methods and Programs in Biomedicine,2013,111 (2) :338-346.
  • 9NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review [J]. Sensors (Basel), 2012, 12 (2): 1211-1279.
  • 10HULBERT S, ADELI H. EEG/MEG- and imaging-based di- agnosis of Alzheimer's disease [J]. Rev Neurosci, 2013, 24 (6) : 563-576.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部