期刊文献+

微博信息可信度评估的数据起源方法 被引量:8

Evaluation of Weibo credibility based on data provenance
下载PDF
导出
摘要 针对现有微博可信度评估中缺少对传播信息的分析,提出一种基于数据起源的微博可信度评估方法,对微博的信息来源和传播过程进行研究。以新浪微博为研究对象,分析用户的关键指标以及微博信息的传播场景,建立微博的PROV数据起源模型,记录微博信息的来源和传播过程的数据起源信息,并验证其有效性。结合传播过程中用户的可信度,利用数据起源信息,完善微博可信度评估的参考依据,弥补了现有一般评估方法中传播信息缺失的不足。 Aiming at the lack of analysis of transmission information in microblog credibility evaluation,this paper proposed a method based on data provenance to research the information source and transmission process.Taking Sina Weibo as the research object,this paper analyzed the key benchmarks of users and the scene of information transmission,built a PROV-model to describe Weibo,recorded the provenance information in transmission,and verified the validation of the provenance information.By combining the users’credibility in transmission trace and using data provenance information,this paper optimized the reference of Weibo credibility,made up for transmission information deficiency in existing general evaluation methods.
作者 张子良 董红斌 谭成予 梁意文 Zhang Ziliang;Dong Hongbin;Tan Chengyu;Liang Yiwen(School of Computer Science,Wuhan University,Wuhan 430079,China;International School of Software,Wuhan University,Wuhan 430079,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第11期3330-3334,共5页 Application Research of Computers
基金 国家自然科学基金面上项目(61170306)
关键词 微博 可信度 数据起源 PROV模型 microblog credibility data provenance PROV-model
  • 相关文献

参考文献8

二级参考文献164

  • 1郑智斌,邓兰花.网络个人信源及其可信度分析[J].情报理论与实践,2008,31(6):857-859. 被引量:8
  • 2李景涛,荆一楠,肖晓春,王雪平,张根度.基于相似度加权推荐的P2P环境下的信任模型[J].软件学报,2007,18(1):157-167. 被引量:115
  • 3李亚子.数据起源标注模式与描述模型[J].现代图书情报技术,2007(7):10-13. 被引量:16
  • 4Weng J, Lim E, Jiang J, et al. TwitterRank: finding topicsensitive influential twitterers[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM '10). New York, NY, USA: ACM, 2010: 261-270.
  • 5Cha M, Haddadi H, Benevenuto F, et al. Measuring user influence in Twitter: the million follower fallacy[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM 2010), 2010: 10-17.
  • 6Qazvinian v, Rosengren E, Radev D, et al. Rumor has it:identifying misinformation in microblogs[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP ' 11). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 1589-1599.
  • 7Grove F, Sen S. TwitAg: a multi-agent feature selection and recommendation framework for Twitter[C]//LNCS 7057: Proceedings of the 13th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA '10). Berlin, Heidelberg: Springer-Verlag, 2012: 394-397.
  • 8Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI '09). Arlington, Virginia, USA: AUAI Press, 2009: 452-461.
  • 9Hannon J, McCarthy K, Smyth B. Finding useful users on Twitter: twittomender the followee recommender[C]// LNCS 6611: Proceedings of the 33rd European Conference on Information Retrieval (ECIR 2011). Berlin, Heidelberg: Springer-Verlag, 2011: 784-787.
  • 10Hannon J, Bennett M, Smyth B. Recommending Twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ' 10). New York, NY, USA: ACM, 2010: 199-206.

共引文献95

同被引文献144

引证文献8

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部