期刊文献+

基于自适应积分反步的四旋翼飞行器控制 被引量:12

Adaptive integral backstepping control of quadrotor
下载PDF
导出
摘要 四旋翼飞行器系统是强耦合、多输入多输出(MIMO)和非线性的。首先进行动力学建模,考虑模型参数确定与阵风干扰两种情况;然后提出了一种自适应积分反步控制方法应用于飞行器跟踪期望轨迹,整个控制系统采用双闭环回路结构,内回路用于控制姿态,外回路用于稳定位置;最后在模型参数确定的情况下,与积分反步法(integral backstepping,IB)进行实验对比。在模型参数不确定情况下,对飞行器的期望姿态和位移进行跟踪,结果表明,应用自适应积分反步(adaptive integral backstepping,AIB)控制算法的飞行器对外界较强阵风干扰和模型参数不确定具有一定的鲁棒性,能够较为精确地完成轨迹跟踪任务。 The quadrotor is multi-input multiple output(MIMO),strong coupling and nonlinear systems.Firstly,considering the quadrotor systems with parameters known and the external strong gust interference,this paper established the models.Se-condly,it proposed an adaptive integral backstepping control method for the quadrotor aircraft.It used the double closed loop structure for entire control system,the inner loop controlled the attitude,and the outer loop stabilized the position.Finally,it contrasted with integral backstepping(IB)when determined the model parameters.In the case of uncertain model parameters,tracked the attitude and position of the quadrotor.The simulation results show that the adaptive integral backstepping(AIB)control algorithm has a certain robustness to the external strong gust interference and the model parameters uncertainy.Perform a trajectory tracking task more accurately.
作者 石川 林达 Shi Chuan;Lin Da
出处 《计算机应用研究》 CSCD 北大核心 2018年第11期3338-3342,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61640223) 四川省自然科学基金重点资助项目(2016JY0179) 中国科学院自动化研究所复杂系统管理与控制国家重点实验室开放基金资助项目(20160106) 人工智能四川省重点实验室开放基金资助项目(2016RZJ02) 校级研究生创新基金资助项目(y2016034)
关键词 积分反步 自适应 四旋翼飞行器 轨迹跟踪 阵风干扰 模型参数不确定 integral backstepping adaptive quadrotor trajectory tracking gust interference model parameter uncertainty
  • 相关文献

参考文献2

二级参考文献51

  • 1Kapila V, Sparks A G, Buffington J M, Yan Q G. Spacecraft formation flying: dynamics and control. In: Proceedings of the 1999 IEEE American Control Conference. San Diego: IEEE, 1999. 4137-4141.
  • 2Schaub H, Alfriend K T. Impulsive feedback control to establish specific mean orbit elements of spacecraft formations. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 739-745.
  • 3de Queiroz M S, Kapila V, Yan Q G. Adaptive nonlinear control of multiple spacecraft formation flying. Journal of Guidance, Control, and Dynamics, 2000, 23(3): 385-390.
  • 4Wong H, Pan H Z, de Queiroz M S, Kapila V. Adaptive learning control for spacecraft formation flying. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, USA: IEEE, 2001. 1089-1094.
  • 5Liu H T, Shan J J, Sun D. Adaptive synchronization control of multiple spacecraft formation fiying. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(3): 337-342.
  • 6Wong H, Kapila V, Sparks A G. Adaptive output feedback tracking control of spacecraft formation. International Journal of Robust and Nonlinear Control, 2002, 12(2-3): 117-139.
  • 7Lima H C, Bang H. Adaptive control for satellite formation fiying under thrust misalignment. Acta Astronautica, 2009, 65(1-2): 112-122.
  • 8Pongvthithum R, Veres S M, Gabriel S B, Rogers E. Universal adaptive control of satellite formation flying. International Journal of Control, 2005, 78(1): 45-52.
  • 9Lim H C, Bang H C, Park K D, Lee W K. Optimal formation trajectory-planning using parameter optimization technique. Journal of Astronomy and Space Sciences, 2004, 21(3): 209-220.
  • 10Cho H C, Park S Y. Analytic solution for fuel-optimal reconfiguration in relative motion. Journal of Optimization Theory and Applications, 2009, 141(3): 495-512.

共引文献47

同被引文献69

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部