摘要
稀疏表示在人脸识别问题上取得了非常优秀的识别结果,但在单样本条件下,算法性能下降严重。为提高单样本条件下稀疏表示的应用能力,提出一种鲁棒稀疏表示单样本人脸识别算法(RSR)。通过使用每张人脸图像创建一组位置图像来扩充每个对象训练样本,并利用L_(2,1)范数约束保证RSR算法选择正确对象的位置图像。在AR和extended Yale B人脸数据库上进行评测,实验结果表明RSR算法能够有效处理存在遮挡或光照变化的人脸图像,获得了较好的单样本人脸识别准确率,具有很强的鲁棒性。
Sparse representation(SR)has successfully addressed the face recognition problem with sufficient training images of each gallery subject,however,its performance will deteriorate much for single sample face recognition(SSFR).To improve the generalization ability of SR for SSFR,this paper proposed a robust sparse representation(RSR)method.By creating a set of position images for each training picture to expand the training samples of each gallery subject and used L 2,1-norm to prompt RSR selecting the correct position images.Finally,the proposed method was evaluated on AR and extended Yale B face databases.The experimental results demonstrate the effectiveness and robustness of the approach.
作者
沈韬
李克清
夏瑜
Shen Tao;Li Keqing;Xia Yu(School of Computer Science&Technology,China University of Mining&Technology,Xuzhou Jiangsu 221116,China;School of Computer Science&Engineering,Changshu Institute of Technology,Changshu Jiangsu 215500,China;School of Computer Engineering,Suzhou Vocational University,Suzhou Jiangsu 215123,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第11期3491-3496,共6页
Application Research of Computers
基金
江苏省自然科学基金资助项目(BK20140419)
江苏省高校自然科学研究资助项目(14KJB520001)
苏州市物联网工程应用重点实验室项目(SZS201407)
关键词
稀疏表示
单样本
人脸识别
位置图像
L2
1范数
sparse representation
single sample
face recognition
position image
L 2,1-norm