期刊文献+

基于肢体动作序列三维纹理特征的情绪识别 被引量:3

Emotion recognition based on three-dimensional texture feature of body action sequence
下载PDF
导出
摘要 目前基于人脸表情的情绪识别已经相对成熟,而根据人类肢体动作进行情绪识别的研究却不多。通过VLBP和LBP-TOP算子从三维空间中提取图像序列的肢体动作特征,分析愤怒、无聊、厌恶、恐惧、高兴、疑惑和悲伤七种自然情绪的特点,并用参数优化的支持向量机对情绪分类进行识别,识别率最高能够达到77. 0%。实验结果表明,VLBP和LBP-TOP算子具有较强的鲁棒性,能有效地从肢体动作中识别人的情绪。 At present,emotional recognition based on facial expression has been relatively mature,however,the research on human emotion recognition based on body movements is less.This paper utilized VLBP and LBP-TOP operator to extract the feature of the body movement from the three dimensional space.It analyzed the characteristics of 7 kinds of natural emotions,such as anger,boredom,disgust,fear,happiness,uncertainty and sadness,and used the SVM algorithm to classify emotion,the highest recognition rate could reach 77.0%.The experimental results show the strong robustness of VLBP and LBP-TOP operators and the algorithm can effectively identify human emotions from limb movements.
作者 邵洁 汪伟鸣 Shao Jie;Wang Weiming
出处 《计算机应用研究》 CSCD 北大核心 2018年第11期3497-3499,共3页 Application Research of Computers
基金 国家自然科学基金青年基金资助项目(61302151 61401268) 上海市自然科学基金资助项目(15ZR1418400)
关键词 情绪识别 动态局部二进制模式 三正交平面局部二进制模式 支持向量机 emotional recognition VLBP(volume local binary pattern) LBP-TOP(local binary pattern-three orthogonal planes) SVM(support vector machine)
  • 相关文献

参考文献2

二级参考文献32

  • 1孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 2金义富,朱庆生,邢永康.一种基于关键域子空间的离群数据聚类算法[J].计算机研究与发展,2007,44(4):651-659. 被引量:8
  • 3Robertson N,Reid I.A General Method for Human Activity Recognition in Video[J].Computer Vision and Image Understanding,2006,104(2):232-248.
  • 4Bian Wei,Tao Dacheng,Rui Yong.Cross-domain Human Action Recognition[J].IEEE Transactions on Systems,Man,and Cybernetics,2012,42(2):298-307.
  • 5Wang Yang,Mori G.Hidden Part Models for Human Action Recognition:Probabilistic Versus Max Margin[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(7):1310-1323.
  • 6Hakeem A,Shah M.Learning,Detection and Representation of Multi-agent Events in Videos[J].Artificial Intelligence,2007,171(8):586-605.
  • 7Hamano S,Takano W,Nakamura Y.Motion Data Retrieval Based on Statistic Correlation Between Motion Symbol Space and Language[C]//Proceedings of IEEE International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2011:3401-3406.
  • 8Ren Cheng,Lei Xiaoyong,Zhang Guofeng.Motion Data Retrieval from Very Large Motion Databases[C]//Proceedings of IEEE International Conference on Virtual Reality and Visualization.Washington D.C.,USA:IEEE Press,2011:70-77.
  • 9Poppe R.A Survey on Vision-based Human Action Recognition[J].Image and Vision Computing,2010,28(6):976-990.
  • 10Schuldt C,Laptev I,Caputo B.Recognizing Human Actions:A Local SVM Approach[C]//Proceedings of the17th International Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2004:32-36.

共引文献14

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部