期刊文献+

LASRC-ODP降维算法在行为识别中的应用

Application of LASRC-ODP dimension reduction algorithm in action recognition
下载PDF
导出
摘要 针对分类识别算法在行为识别中存在识别率低和实时性差的问题,提出了一种线性近似稀疏表示分类的正交鉴别投影(LASRC-ODP)算法用于行为识别。LASRC-ODP算法将高维数据投影到低维空间时,最小化类内残差和最大化类间残差,同时利用投影矩阵的正交约束来增强鉴别结果;与LASRC分类相结合,将训练样本构成过完备字典,利用L_2范数求解稀疏系数,优化了求解复杂度、加快了计算速度,得到特征更易区分的样本、最后根据L_1范数和残差找出对应类别,保证了强鲁棒性。采用KTH行为数据库进行实验,可使LASRC分类时识别率为97. 1%,实验结果表明该算法识别率高、抗噪和鲁棒性强,为行为识别的研究提供了一种新思路。 Aiming at the problem that classification algorithm has low recognition rate and poor real-time performance in action recognition,this paper proposed a novel method based on an orthogonal recognition projection algorithm with linear approximation sparse representation(LASRC-ODP).The LASRC-ODP algorithm minimized with-class residuals and maximized between-class residuals when projecting high-dimensional data into low-dimensional space,while improving the discriminant results by using orthogonal constraints of the projection matrix.And then it combined with LASRC classification making the training samples a complete dictionary,and by resolving to the sparse coefficients with L 2-norm,which could optimize the solution complexity,speeded up the calculation speed,and got the sample with characteristics more easily distinguished.Finally,it found the corresponding categories according to L 1-norm and residual.In the KTH behavior database,the proposed algorithm can make the recognition rate of LASRC up to 97.1%,and the anti-noise ability is strong,which can be used for the recognition of action.
作者 简献忠 贺士霖 Jian Xianzhong;He Shilin(School of Optical-Electrical&Computer Engineering,University of Shanghai for Science&Technology,Shanghai 200093,China;Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第11期3517-3520,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(41075019)
关键词 正交鉴别投影 线性近似稀疏表示分类 行为识别 orthogonal discrimination projection linear approximation sparse representation classification action recognition
  • 相关文献

参考文献6

二级参考文献286

  • 1SCHUTZE H, HULL D A, PEDERSEN J O. A comparison of classifiers and document representations for the routing problem[ C ]//Proc of the 18th ACM Int Conf on Research and Development in Information Retrieval. New York : ACM, 1995:229- 237.
  • 2CUTTING D R, KARGER D R, PEDERSON J O, et al. Scatter/gather:a cluster-based approach to browsing large document collections [ C ]//Proc of the 15th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 1992:315- 329.
  • 3SCHUTEZ H, SILVERSTEIN C. Projections for efficient document clustering[ C]//Proc of the 20th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1997,74-81.
  • 4DHILLON I S, MALLELA S, MODHA S. Information theoretic coclustering[C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York:ACM,2003:89-98.
  • 5PANTEL P, LIN D. Document clustering with committees [ C ]//Proc of the 25th Annual lnt ACM SIGIR Conf on Research and Development in Information Retrieval. 2002:199-206.
  • 6ZHA H, HE X, DING C, et al. Bipartite graph partitioning and data clustering[ C]//Proc of the 10th ACM Conf on Information and Knowledge Management. New York : ACM,2001:25- 32.
  • 7XU W, LIN X, GONG Y. Document clustering based on non-negative matrix factorization [ C ]//Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York :ACM,2003:267- 273.
  • 8KONONERKO I. Estimating attributes: analysis and extension of relief[ C]//Proc of European Conf on Machine Learning. 1994: 171- 182.
  • 9SUN Yi-jun. Iterative relief for feature weighting: algorithms, theoties, and applications[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29 ( 6 ) : 1035-1051.
  • 10NAKARIYAKUI S, CASASENT D P. Adaptive branch and bound algorithm for selecting optimal features [ J ]. Pattern Recognition Letters ,2007,28 ( 12 ) : 1415-1427.

共引文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部