期刊文献+

基于改进Logistic回归与不变矩的螺钉滑牙检测方法

Screw sliding detection method based on modified Logistic regression and invariant moment
下载PDF
导出
摘要 为检测螺钉滑牙和脱扣等缺陷,搭建测量系统,并对相关算法进行深入研究.根据螺钉对光照的反射特点,选择合适的光源;对采集的图像在二值化基础上进行霍夫圆检测,得到螺钉的位置及大小;对螺钉中心位置进行轮廓提取,并计算Hu矩;将Hu矩作为特征,输入训练好的改进Logistic回归分类器,进行滑牙判断.实验结果表明:在不同环境光照下测量直径5~8 mm的螺钉,采用本方法能很好地检测出是否滑牙,准确率可达95%以上,基本满足对螺钉滑牙检测的要求;同时,系统稳定可靠,有一定的抗干扰能力,当σ=0.01时本文改进Logistic回归分类算法迭代3步后即开始收敛,而传统方法需迭代151步;当σ=0.1时本文方法迭代35步后即开始收敛,而传统方法因学习率过大而发散. In order to detect the screw sliding and trip,the measurement system is built and the related algorithms used in design of this system are researched.According to the reflection characteristic of the screw,the appropriate light source is selected.The position and size of the screw are obtained by performing the Hough circle on the basis of image binarization.The center of the screw-circle is extracted and the Hu moment is calculated.Hu moments,as characteristics,are input to the improved Logistic regression classifier trained to detect whether the screw is slid-ing.The experimental results show that the screws with diameter of 5-8 mm under different ambient lights can be detected whether the screw is sliding.The accuracy rate can reach more than 95%which meets the require-ments of the screw sliding detection basically,and the system is stable and reliable,and has the certain anti-interference ability.When the learning rateσis 0.01,this modified Logistic regression classification algorithm starts to converge after 33 steps while the traditional method takes 151 steps.Whenσis 0.1,this method starts to converge after 35 steps but the traditional method is divergent due to the excessive learning rate.
作者 郭庆华 王家豪 宋丽梅 杨怀栋 GUO Qing-hua;WANG Jia-hao;SONG Li-mei;YANG Huai-dong(School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387,China;Depart-ment of Precision Instrument,Tsinghua University,Beijing 100084,China;School of Computer,Electrical Engineer-ing and Communication Engineering,Wollongong University,Wollongong 2500,Australia)
出处 《天津工业大学学报》 CAS 北大核心 2018年第5期78-82,共5页 Journal of Tiangong University
基金 国家自然科学基金资助项目(60808020,61078041) 国家科技支撑计划资助项目(2014BAH03F01) 天津市应用基础及前沿技术研究计划资助项目(16JCYBJC15400,15JCYBJC51700) 天津市企业科技特派员资助项目(18JCTPJC61700) 天津市高等学校创新团队培养计划资助项目(TD13-5036) 天津大学精密测试技术及仪器国家重点实验室开放基金资助项目(PIL1603)
关键词 机器视觉 螺钉滑牙 轮廓提取 HU矩 LOGISTIC回归 machine vision screw sliding contour extraction Hu moment Logistic regression
  • 相关文献

参考文献3

二级参考文献21

  • 1杨顺辽,卢凌,杜宗岗,梁军,李晟.SAR图像中机场跑道的自动识别研究[J].武汉理工大学学报(交通科学与工程版),2006,30(1):56-59. 被引量:13
  • 2林玉池,崔彦平,黄银国.复杂背景下边缘提取与目标识别方法研究[J].光学精密工程,2006,14(3):509-514. 被引量:88
  • 3赖作镁,王敬儒,张启衡.背景运动补偿和假设检验的目标检测算法[J].光学精密工程,2007,15(1):112-116. 被引量:20
  • 4Edward M.Mikhail Gordon Gracie.游祖吉 鲁林成等译.测量数据分析与平差[M].测绘出版社,1987..
  • 5BERLALMIO M, SAPIEO G, CASELLES V. Image inpainting[J]. SIC, GRAPH, 2000 ( 1 ) : 417- 424.
  • 6CHAN T F, SHEN J. Mathematical models for local non-texture inpaintings[J]. Journal on Applied Mathematics, 2002,62(3) : 1019-1043.
  • 7OSHER S, SETHIAN J. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation [J]. Journal of Communication Physics,1988,79(1) :12-49.
  • 8SETHIAN J A. Fast marching methods [J]. SIAM Review, 1999,41:199-235.
  • 9FREEMAN H. Boundary Encoding and Processing[M]. New York:Acad. Press, 1970: 241-266.
  • 10XIAO T Q,XIA SH J. A new long trace profiler for aspheric optical surface metrology[J]. SPIE, 2002, 4927:208-213.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部