期刊文献+

高校大数据平台的构建与应用探索 被引量:2

Exploration on the Construction and Application of the Big Data Platform in Colleges and Universities
下载PDF
导出
摘要 随着高校信息化建设的全面发展,许多信息化系统都在陆续实施,规范和简化了许多的业务工作。但是,各业务系统并没有统一建设和管理,数据共享效果不显著。结合对大数据技术的认知和其他高校对于大数据平台的研究,论文提出一种大数据平台的构建方法,包含四个部分:数据平台、数据仓库、数据分析、算法推荐,重点介绍了这四部分涉及的设计、技术和应用。 Withthe comprehensivedevelopmentof the informatization construction in colleges and universities,manyinformation systemshas been implemented in succession,which has standardized and simplified a lot of business work.However,there is no uniform construction and management of the business systems,and the data sharing effect is not significant.Combined with the cognition of big data technology and other universities'research on big data platform,amethod of constructing big data platform is put forward,which includes four parts of data platform,data warehouse,data analysis and algorithm recommendation.The paper mainly introduces the design,technology and application of the four parts.
作者 曾杨 ZENG Yang(Information Technology Office,Shanghai University,Shanghai 200444,China)
出处 《中小企业管理与科技》 2018年第30期169-170,共2页 Management & Technology of SME
关键词 教育大数据平台 数据分析 算法推荐 educational bigdataplatform data analysis algorithmrecom mendation
  • 相关文献

参考文献4

二级参考文献50

  • 1夏俊鸾,邵赛赛.Spark Streaming: 大规模流式数据处理的新贵. http://www.csdn.net/article/2014-01-28/2818282-Spark -Streaming-big-data. 2014.
  • 2Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008, 3(51-1): 107-113.
  • 3耿益锋,陈冠诚.Impala:新一代开源大数据分析引擎. http://www.csdn.net/article/2013-12-04/2817707-ImpalaBig- Data-Engine. 2013.12.
  • 4Strom. http://storm.incubator.apache.org/. 2014.
  • 5Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A fault-tolerant abstration for in-memory cluster computing. Proc. of the 9th USENIX Conference on NetWorked System Design and Implementation. 2012. 2-16.
  • 6Gonzalez J, Low Y, Gu H. PowerGraph: Distributed garph-p arallel computation on natural graphs. Proc. of the 10th USENIX Symposium on Operating Systems Design and Implementatin. 2012. 17-30.
  • 7Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster Computing with Working Sets. Technical Report No. UCB/ EECS- 2010-53May 7, 2010.
  • 8Xin R, Rosen J, et al. Shark: SQL and Rich Analytics at Scale. Technical Report UCB/EECS. 2012.11.
  • 9Engle C, Lupher A, et al. Shark: Fast Data Analysis Using Coarse-grained Distributed Memory. SIGMOD 2012. May 2012.
  • 10Zaharia M, Das T, Li HY, Shenker S, Stoica I. Discretized streams: An efficient and fault-tolerant model for stream. Proc. on Large Clusters. HotCloud 2012. June 2012.

共引文献204

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部