期刊文献+

双弥散多孔介质平板通道内纳米流体流动特征

Flow Characteristics of Nanofluid in a Parallel-Plate Channel Occupied by a Bidisperse Porous Medium
下载PDF
导出
摘要 基于双速度Brinkman-Darcy扩展动量模型,分析Cu/H2O纳米流体在双弥散多孔介质平板通道内的流动特征.采用正常模式降阶法推得双弥散多孔介质裂纹相(f相)和多孔相(p相)的速度分布解析解.参数分析表明,两相中纳米流体的速度随着固体颗粒体积分数的增加而降低;动量传递系数增加,两相速度呈相反趋势变化,且速度差变小;达西(Darcy)数增大,两相速度增大且速度差变大;当仅p相Darcy数增大时,导致双弥散效应增强,两相速度亦同时增大,但两相速度差变小;随着纳米流体体积分数增加,流动阻力增大. Based on the two-velocity Brinkman-extended Darcy momentum model,the characteristics of Cu/H 2O nanofluids in a parallel-plate channel filled with a bidisperse porous medium(BDPM)was analyzed.The analytica1 solutions for BDPM fracture(f)and porous(p)phase velocity distributions were derived by the norma1 mode reduction method.The parametric study indicates that an increase in the nanoparticle volume fraction leads to a reduction in the fluid velocities for both phases.As the momentum transfer coefficient increases,the change of f-phase velocity exhibits an opposite trend and the velocity difference between the two phases becomes smaller.With increasing Darcy numbers,the velocities of two phases as well as their difference increase.For the case of increasing p-phase Darcy number only and consequently enhancing the bidispersion effects,the velocities for both phases increase while their difference becomes smaller.As the volume fraction of nanofluid increases,the flow resistance increases.
作者 王启家 王克用 李培超 WANG Qijia;WANG Keyong;LI Peichao(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《上海工程技术大学学报》 CAS 2018年第3期221-226,共6页 Journal of Shanghai University of Engineering Science
基金 上海工程技术大学科研创新资助项目(17KY0122)
关键词 双弥散多孔介质 纳米流体 平板通道 正常模式降阶法 动量传递 流动阻力 bidisperse porous medium(BDPM) nanofluid parallel-plate channel norma1 mode reduction method momentum transfer flow resistance
  • 相关文献

参考文献3

二级参考文献28

  • 1杨骁,刘雪梅.多孔介质平板通道发展传热中非局部热平衡时的温度分布特征[J].应用数学和力学,2006,27(8):978-986. 被引量:5
  • 2ChoiS U S. Enhancing thermal conductivity of fluids with nanopar- ticles [ C ]. Developments and applications of non-NewtonianFlows, San Francisco : ASME Press, 1995:99 - 105.
  • 3J A Eastman, S U S Choi, S Li. Enhanced Thermal Conductivity through the Development of Nanofluids [ J ]. Nanophase and Nano- composite Materials II, MRS, Pittsburgh, 1997,457,3 - 11.
  • 4P Keblinski, J A Eastman, D G Cahill. Nanofluids for thermal transport [ J ]. Materials Today,2005,8 (6) :36 - 44.
  • 5Lee S, Choi S U S. Application of metallic nanoparticle suspensions in advanced cooling systems[J]. ASME ,1996,342,227 -234.
  • 6Abdallah P B. Heat transfer through near-field interactions in nanoflu- ids[ J]. Applied Physics Letters ,2006,89,113 - 117.
  • 7Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [ J ]. International Journal of Heat and Mass Transfer, 2003,46(19):3639 -3653.
  • 8R Prasher,P Bhattacharya, P E Phelan. Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids) [ J]. Physical Review Letters,2005,94,025901.
  • 9CHEN Z Q, CHENG P, HSU C T. A Theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media [J]. International Communications in Heat and Mass Transfer,2000,27(5) ..601 - 610.
  • 10NIELD D A, KUZNETSOV A V. A two-velocity two-temperature model for a bi-dispersed porous medium., forced convection in a channel [J]. Transport in Porous Media,2005,59(3) ..325 -339.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部