期刊文献+

零膨胀几何分布的参数估计 被引量:5

Parameter Estimation of Zero-Inflated Geometric Distribution
下载PDF
导出
摘要 在产品质量检验过程中,经常会出现零观测值较多的情况.为更好拟合这类数据,提出零膨胀几何分布模型,引入隐变量,运用极大似然估计(MLE)、最大期望(EM)算法下的极大似然估计及贝叶斯估计对模型参数进行估计.设定不同的样本量,不同的参数真值,采用数值模拟方法对上述研究方法的性能进行评估. There are often more zero observations in the fields of product quality inspection.In order to better fit such data,a zero-inflated geometric distribution model was proposed.Implicit variables were introduced to estimate the model parameters by using maximum likelihood estimation(MLE),maximum likelihood estimation under expectation maximization(EM)algorithm and Bayesian estimation.With different sample sizes and different true values of the parameters,the performances of research methods were evaluated by numerical simulation.
作者 肖翔 刘福窑 XIAO Xiang;LIU Fuyao(School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《上海工程技术大学学报》 CAS 2018年第3期267-271,277,共6页 Journal of Shanghai University of Engineering Science
关键词 零膨胀几何分布 极大似然估计 最大期望(EM)算法 贝叶斯估计 zero-inflated geometric distribution maximum likelihood estimation(MLE) expectation maximization(EM)algorithm Bayesian estimation
  • 相关文献

参考文献2

二级参考文献14

  • 1Johnson N L, Kotz S. Distribution in Statistics: discrete distribution [ M ]. New York : Wiley, 1969.
  • 2Lambert D. Zero-inflated poisson regression, with an application to defects in manufacturing [ J]. Technomet- ric,1992,34:1 - 14.
  • 3Yip K C H, Yau K K W. On Modeling Claim Frequen- cy Data in General Insurance with Extra Zeros [ J ]. In- surance : Mathematics and Economics, 2005 (36) : 153- 163.
  • 4Jean-Philippe B, Michel D, Montserrat G. Risk classifi- cation for claim eounts:a comparative analysis of various zero-inflated mixed poisson and hurdle models[J]. North American Actuarial Journal ,2007 ( 11 ) : 110 - 131.
  • 5Jong P D, Heller G Z. Generalized Linear Models for Insurance Data [ M ]. Cambridge: Cambridge University Press, 2008.
  • 6Aike H. Information theory and an extension of the maxi- mum likelihood principle, proceedings of the 2nd inter- national symposium on information theory [ J ]. Aka- demiai Kiade Budapest, 1973:267 - 281.
  • 7Shwartz G. Estimating the dimension of a model [ J]. Annals of Statistics, 1978 (6) : 461 - 464.
  • 8茆诗松;程依明;濮晓龙.概率论与数理统计教程[M]北京:高等教育出版社,2011.
  • 9魏宗舒.概率论与数理统计教程[M]北京:高等教育出版社,2010.
  • 10刘源,徐昕.保险精算中的多零索赔现象探析[J].统计与决策,2008,24(21):21-23. 被引量:4

共引文献5

同被引文献8

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部