期刊文献+

基于CKF的多雷达分布式再入弹道目标实时跟踪算法

CKF-based real-time tracking algorithm for multi-radar distributed reentry trajectory target
下载PDF
导出
摘要 鉴于分布式数据融合模式具有扩展性强、系统生存能力强的优势,提出一种基于容积卡尔曼滤波(CKF)的多雷达分布式再入弹道目标实时跟踪算法(DCKF)。首先利用统计线性误差传播的方法将CKF算法嵌入扩展信息滤波器得到容积信息滤波器,然后利用一致性算法将多量测值集中式滤波进行分布式等价表示以更新状态估计与误差协方差矩阵,得到DCKF算法。区别于带有数据融合中心的集中式算法,该算法中数据信息的交互仅在具有通信链路的相邻雷达间进行,无数据融合中心。仿真结果表明,DCKF算法能有效提高单雷达测站弹道目标实时跟踪的精度,而且相较于多雷达集中式算法保证了跟踪精度,证明了算法的有效性。 Since the distributed data fusion mode has strong expansibility and powerful system viability,a cubature Kalman filter(CKF)based real-time tracking algorithm for multi-radar distributed reentry ballistic target is proposed.The statistic method for the linear error propagation is used to embed the CKF algorithm into the extended information filter to obtain the cubature information filter,and then the consistency algorithm is used to perform the distributed equivalent representation for the centralized filtering with multiple measured values to update the state estimation and error covariance matrix,so as to obtain the DCKF algorithm.In comparison with centralized algorithm with data fusion center,the data information interaction in the proposed algorithm is carried out between the adjacent radars with communication link,and the algorithm has no data fusion center.The simulation results prove that the DCKF algorithm can improve the single-radar station′s real-time tracking accuracy of ballistic target,and ensure the tracking accuracy similar to multi-radar centralized algorithm,and its effectiveness is verified.
作者 李春月 廖育荣 倪淑燕 陈帅 LI Chunyue;LIAO Yurong;NI Shuyan;CHEN Shuai(Department of Optical and Electronic Equipment,Space Engineering University,Beijing 101416,China)
出处 《现代电子技术》 北大核心 2018年第21期1-6,共6页 Modern Electronics Technique
基金 国家高技术研究发展计划(2015AA7026085)~~
关键词 线性误差 弹道目标 实时跟踪 分布式数据融合 容积卡尔曼滤波 一致性算法 linear error ballistic target real.time tracking distributed data fusion cubature Kalman filter consistency algorithm
  • 相关文献

参考文献2

二级参考文献35

  • 1DMITRIYEV S P, STEPANOV O A, SHEPEL S V. Nonlinear filtering methods application in INS alignment [ J ]. IEEE Transactions on Aerospace and Electronic System. St. Petersburg, 1997, AES-33(1) : 260-272.
  • 2KONG X Y, NEBOT E M, DURRANT-WHYTE H. Development of a nonlinear psi-angle model for large misalignment errors and its application in INS alignment and calibration [ C ]. International Conference on Robotics & Automation IEEE. Detroit, 1999.
  • 3ARASARATNAM I, HAYKIN S. Cubature Kalman filter [J]. IEEE Transactions on Automatic Control, 2009, 54 : 1254-1269.
  • 4ANUP. Bayesian filtering for dynamic systems with applications to tracking[ M]. Univcrsitat Polit'ecnica de Catalunya, 2010.
  • 5BAE J, KIM Y. Nonlinear estimation for spacecraft attitude using decentralized unscented information filter[ C ]. International Conference on Control Automation and Systems, 2010 : 1562-1566.
  • 6JIA B, XIN M, CHENG. Y Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation [ J ]. Journal of Guidance Control and Dynamics, 2011, 34(2) :367-379.
  • 7LIU J, CAI B G, TANG T, et al. A CKF based GNSS/ INS train integrated positioning method [ C ]. International Conference on Mechatronics and Automation, 2010: 1686-1689.
  • 8PESONEN H, PICHE R. Cubature-based Kalman filters for positioning[C]. Workshop on Positioning Navigation and Communication, 2010:45-49.
  • 9WU Y X, HU D W, Wu M PI, et al. An numerical-integration perspective on guassian filters [ J ]. IEEE Trans on Signal Processing, 2006,54 ( 8 ) : 2910-2921.
  • 10ITO K, XIONG K Q. Gaussian filters for non- linear filtering problem [ J ]. IEEE Transactions on Automatic Control, 2000,45 (5) :910-927.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部