期刊文献+

一种基于相关性分析与对数搜索聚类的跨媒体检索方法

A cross media retrieval method based on correlation analysis and logarithmic search clustering
下载PDF
导出
摘要 为了在不需人工标记的多媒体数据集上进行跨媒体检索,避免不同媒体之间的语义提取与关联时具有的局限性等问题,首先提出了一种基于相关性分析的音频与图像间的关系数据集的收集机制,然后提出了一种基于对数搜索思想的聚类方法用于跨媒体检索模型的训练,最后提出了一种基于关联性分析的跨媒体检索方法。实验结果表明,所提方案的音频检索图像的第一结果的平均相关度为82.92%,而图像检索音频的第一结果的平均相关度为61.25%,能够较好地解决当前环境下的图像、音频之间的跨媒体搜索需求。 To carry out cross-media retrieval on multimedia datasets without manual labeling,and to avoid the limitations of semantic extraction and association between different media,a correlation between audio and image based on correlation analysis is proposed.Based on the collection mechanism of relational data sets,a clustering method based on logarithmic search idea is proposed for the training of cross-media retrieval models.Then,a cross-media retrieval method based on relevance analysis is proposed.The experimental results show that the average correlation of the first result of the audio search image of the proposed scheme is 82.92%,and the average correlation of the first result of the image retrieval audio is 61.25%,which can better solve the cross-media search needs between image and audio in the current environment.
作者 梁栋 杨宏昊 许长桥 LIANG Dong;YANG Honghao;XU Changqiao(Institute of Network Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《中国科技论文》 CAS 北大核心 2018年第14期1590-1595,共6页 China Sciencepaper
关键词 跨媒体检索 图像 音频 聚类 相关性分析 对数搜索 cross media retrieval image audio clustering correlation analysis logarithmic search
  • 相关文献

参考文献5

二级参考文献26

  • 1ZHAO R, GROSKY W I. Narrowing the semantic gap - improved text - based Web document retrieval using visual features [ J ]. IEEE Transactions on Multimedia, 2002,4(2) :189 - 200.
  • 2LAVRENKO V, MANMATHA R, JEON J. A model for learning the semantics of pictures [ C ]//Proc Conf Ad- vances in Neural Information Processing Systems. [S. l. ]:[s.n. ],2003:91 - 100.
  • 3SMEULDERS W M, WORRING M, SANTINI S, et al. Content - based image retrieval at the end of the early years [ J ]. IEEE Trans Pattern Anal Mach Intell, 2000, 22(12) :1349 - 1380.
  • 4JONATHON H S, SINCLAIR P A S, LEWIS P H,et al. Bridging the semantic gap in multimedia information retrieval topdown and bottom -up approaches [ C ]//Mastering the Gap : from Information Extraction to Semantic Representation / 3rd European Semantic Web Conference. Budva: Montenegro ,2006:341 - 355.
  • 5ENSER P G B, SANDOM C J, LEWIS P H. Automatic annotation of images from the practitioner perspective [C]//Image and Video Retrieval: 4th International Conference. [ S.l. ] : Singapor,2005:20 - 22.
  • 6Conference on Multimedia and Expo (II). [ S. l. ] : [ s. n. ] ,2000:679 - 682.
  • 7SMEULDERS A, WORRING M, SANTINIS S, et al.Content-based image retrieval at the end of the early years[ J]. IEEE Trans On Pattern Analysis and Machine Intelligence, 2000,22 ( 12 ) : 1 349-1 379.
  • 8EAKINS J P. Retrieval of still images by conterd [ OL ]. http:////www.nesc. ac. uk/esi/events/grand-challenges/ panele/c33. pdf,2004-03-12.
  • 9GORKANI M, PICARD R W. Texture orientation for sorting photos at a glance[ A]. IEEE Proc Int Conf On Pattern Recognition [ C ]. Piscataway: IEEE Press, 1994.459-464.
  • 10VAILAYA A, FIGUEIREDO M , JAINETAL A K. Image classification for content-based indexing [ J ]. IEEE Trans On Image Processing, 2001, 10( 1 ) :117-130.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部