期刊文献+

Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information 被引量:7

Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information
下载PDF
导出
摘要 New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed. New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1679-1687,共9页 地学前缘(英文版)
基金 supported by the Research Grants Council of the Hong Kong SAR Government(Grant Nos.16202716 and C6012-15G)
关键词 SLOPE reliability Monitoring INFORMATION BAYESIAN networks RISK management VALUE of INFORMATION BIG data Slope reliability Monitoring information Bayesian networks Risk management Value of information Big data
  • 相关文献

二级参考文献21

  • 1Attoh-Okine, N.O., Cooger, K., Mensah, S., 2009. Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling. Journal of Construction and Building Materials 23, 3020-3023.
  • 2Das, S.K., Basudhar, EK., 2006. Undrained lateral load capacity of piles in clay using artificial neural network. Computer and Geotechnics 33 (8), 454-459.
  • 3Demuth, H., Beale, M., 2003. Neural Network Toolbox for MATLAB-user Guide Version 4.1. The Math Works Inc.
  • 4Friedman, J.H., 1991. Multivariate adaptive regression splines. The Annals of Sta- tistics 19, 1-141.
  • 5Gandomi, A.H., Roke, D.A., 2013. Intelligent formulation of structural engineering systems. In: Seventh M1T Conference on Computational Fluid and Solid Me- chanics- Focus: Multiphysics and Multiscale, 12-14 Jun., Cambridge, USA.
  • 6Garson, G.D., 1991. Interpreting neural-network connection weights. Al Expert 6 (7), 47-51.
  • 7Goh, A.T.C., Zhang, W.G., 2014. An improvement to MLR model for predicting liquefaction-induced lateral spread using Multivariate Adaptive Regression Splines. Engineering Geology 170, 1 10.
  • 8Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction, second ed. Springer.
  • 9Jekabsons, G., 2010. VariReg: a Software Tool for Regression Modelling Using Various Modeling Methods. Riga Technical University. http://www.cs.rtu.lv/ jekabsons/.
  • 10Jeon, J.K., Rahman, M.S., 2008. Fuzzy Neural Network Models for Geotechnical Problems. Research Project FHWA/NC/2006-52. North Carolina State Univer- sity, Raleigh, N.C.

共引文献39

同被引文献46

引证文献7

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部