期刊文献+

基于最小平均距离免疫算法的模糊红外图像分割(英文) 被引量:4

Blurred Infrared Image Segmentation Using New Immune Algorithm with Minimum Mean Distance Immune Field
下载PDF
导出
摘要 由于犯罪分子利用各种方法来避开传统的刑侦图像技术,因而红外图像逐渐成为获取犯罪现场痕迹的有效手段。然而,从犯罪现场拍摄的红外图像其目标痕迹大多是弱化的,所以在这类红外图像中分割目标是一项具有挑战性的任务。已有基于生物免疫的各类算法尚未明确描述免疫分割作用领域,以及免疫网络算法模型中的免疫识别距离。为实现对目标痕迹弱化红外图像的有效分割,提出了一种新的具有免疫作用领域和最小平均免疫识别距离的人工免疫构架,设计了一种具备最小平均距离免疫域的免疫分割算法。该方法根据红外图像的特点,采用多步分类算法、免疫变异和自适应免疫最小均距识别方法,根据目标区域和背景区域的总体统计特性实现最佳分类。实验结果表明,提出的基于最小平均距离的免疫算法能够有效地分割目标弱化的红外图像。与经典的边缘模板和区域模板方法相比,该算法具有更好的分割效果,尤其是针对目标弱化红外图像的分割,该算法能够较好地给出五个手指的边界轮廓。 Criminals tend to use various methods to cope with the traditional forensic image technologies,so infrared image is becoming an effective means for obtaining crime scene traces.However,segmentation targets from infrared image shoot in crime scene is a c hallenging task as these images are target weakened infrared images.Previous st udies about immune algorithms do not describe immune variation and immune recogn ition distance in the network and algorithm.In opposition to segment these targ et weakened traces infrared images,we propose a new immune framework with immun e variation and minimum mean immune recognition distance,and construct a new im mune segmentation algorithm with minimum mean distance immune field.According t o the distinguishing feature of infrared images,this method use multi-step cla ssification algorithm,immune variation and adaptive immune minimum mean distanc e recognition to achieve optimal classification based on the overall statistical properties of target areas and background areas.Experimental results show that the proposed immune algorithm with minimum mean distance can segment target wea kened infrared images efficiently.Compared with classical edge template and con ventional region template methods,the proposed algorithm has better segmentatio n results,especially the boundaries of five fingers.
作者 于晓 周子杰 Kamil Ríha YU Xiao;ZHOU Zi-jie;Kamil Ríha(School of Electrical and Electronic Engineering,and Tianjin Key Laboratory for Control Theory& Applications in Complicated Systems,Tianjin University of Technology,Ti anjin 300384,China;Department of Telecommunications,Brno University of Technology,BRNO 61200,Czech Republic)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第11期3645-3652,共8页 Spectroscopy and Spectral Analysis
基金 the National Natural Science Foundational of China
关键词 模糊红外图像 图像分割 免疫域 Blurred infrared image Image segmentation Immune field
  • 相关文献

同被引文献36

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部