期刊文献+

一种随机隐退DBN的脑电信号识别方法

An improved random retreat DBN recognition method for EEG signals
下载PDF
导出
摘要 针对DBN处理小样本脑电信号训练时间长且存在过拟合的问题,提出基于随机隐退的DBN算法对左右手运动想象脑电信号进行分类识别.先对原始脑电数据进行降维预处理,然后输入到随机隐退DBN模型中进行训练,得到最优参数值后进行分类识别.实验结果表明:与CSP、PCA、单一DBN网络等方法相比,基于随机隐退的DBN算法在保持较高识别率的同时,降低了对数据集的训练处理时间,证明了该方法的有效性.最后在智能轮椅平台上验证了该算法的可行性. To solve the problem of long training time and over-fitting of small sample EEG signal processing,this paper proposes a DBN based on random retreat algorithm,which can classify and identify the left and right hand motion imaginary EEG signals.Firstly,the original EEG data were processed by dimension reduction,and the random DBN model was used to train the reduced EEG data,then the optimal parameter values for classification and recognition were obtained.The experimental results show that compared with CSP,PCA and single DBN network,the DBN algorithm based on random retreat can maintain the high recognition rate and reduces the training time,which proves the effectiveness of the method.Finally,the feasibility of the algorithm was verified on the intelligent wheelchair platform.
作者 蔡军 胡洋揆 张毅 CAI Jun;HU Yangkui;ZHANG Yi(School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第9期186-190,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(61673079) 重庆市科学技术委员会项目(cstc2015jcyjBX0066)
关键词 DBN 脑电信号 小样本集 随机隐退 智能轮椅 deep belief networks EEG small sample random retreat intelligent wheelchair
  • 相关文献

参考文献3

二级参考文献185

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 2000, 10(1): 19-41
  • 3Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Processing Letters, 2006, 13(5): 308-311
  • 4Campbell W M, Sturim D E, Reynolds D A, Solomonoff A. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse, France: IEEE, 2006. 97-100
  • 5Deng J, Zheng T F, Wu W H. Session variability subspace projection based model compensation for speaker verificatio. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington D. C., USA: IEEE, 2007. 47-50
  • 6Reynolds D A. Channel robust speaker verification via feature mapping. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China: IEEE, 2003. 53-56
  • 7Matejka P, Burget L, Schwarz P, Glembek O, Karafiat M, Grezl F. STBU system for the NIST 2006 speaker recognition evaluation. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington D. C., USA: IEEE, 2007. 221-224
  • 8NIST. The NIST year 2006 speaker recognition evaluation plan [Online], available: http://www.nist.gov/speech/tests/ spk/2006/sre-06-evalplan-v9.pdf, February, 2007
  • 9Lamel L, Rabiner L, Rosenberq A, Wilpon J. An improved endpoint detector for isolated word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(4): 777-785
  • 10Xiang B, Chaudhari U V, Navratil J, Ramaswamy G N, Gopinath R A. Short-time Gaussianization for robust speaker verification. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, USA; IEEE, 2002. 681-684

共引文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部