期刊文献+

基于贝叶斯网络的智能电能表故障类型预测 被引量:17

Prediction of the fault type of smart meters based on the Bayesian network
下载PDF
导出
摘要 针对智能电能表受到外界各种因素影响出现的故障,文中提出了一种基于贝叶斯网络的智能电能表故障类型分类与预测模型。分析了造成智能电能表故障的各种因素和常见的故障类型,通过大量历史故障数据的训练,结合专家意见,采用了基于评分搜索的方法构建了贝叶斯网络结构,在此基础上进行了故障类型预测和决策分析,并对提出的方法进行验证。研究结果表明:该方法可以有效地对智能电能表的故障类型进行预测,计算效率高,具有较好的适用性。 For the failure of smart meter due to various external factors,this paper presents a classification and prediction model of smart meter fault type based on Bayesian networks.First of all,we analyzed various factors that caused the failure of smart meter,and then,combined with expert advice,the Bayesian network structure is constructed based on scoring by the training model with a large number of historical failure data.The fault type prediction and decision analysis are carried out,and the performance of the proposed method is verified.The research results show that this method can effectively predict the fault type of smart meter,and has high computational efficiency and good applicability.
作者 郑安刚 张密 曲明钰 赵兵 陈昊 熊秋 Zheng Angang;Zhang Mi;Qu Mingyu;Zhao Bing;Chen Hao;Xiong Qiu(China Electric Power Research Institute,Beijing 100186,China;Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《电测与仪表》 北大核心 2018年第21期143-147,共5页 Electrical Measurement & Instrumentation
基金 国网公司科技项目(5442JL170006)
关键词 贝叶斯网络 智能电能表 条件概率表 K2算法 Bayesian network smart meter CPT K2 algorithm
  • 引文网络
  • 相关文献

参考文献5

二级参考文献41

共引文献96

同被引文献236

引证文献17

二级引证文献61

相关主题

;
使用帮助 返回顶部