摘要
情感多分类标注对文本信息的敏感性远高于二分类问题。为了有效利用语义依赖距离和语义多层次进行情感多分类,提出一种多窗口多池化层的卷积神经网络模型。首先使用多窗口的卷积层提取上下文局部语义,然后通过多池化层降低特征维度,同时保留不同层次的语义,由多层次语义构成文本特征向量,最后送入全连接层完成多分类标注。采用斯坦福情感树库数据集验证所提模型的多分类标注效果。实验结果表明,在训练集含短语和未包含短语两种设定下,模型的短文本情感多分类正确率分别达到54.6%和43.5%。
Deep learning based approaches achieved less for sentiment classification with multiple labels.For this issue,this paper proposes a model called mwmpCNN(multi-windows and multi-pooling Convolutional Neural Network)to grasp the semantic distance and various emotional levels.mwmpCNN assemblies convolution layer with multiple windows to extract local context semantic,and then applies multi-pooling layer to keep multi-level semantic in short text when the feature dimension is reduced.Here,the text feature vector is constructed and reflected by the multi-level semantic,and connection layer is implemented for multi-label classification.This paper evaluates mwmpCNN by the test on Stanford Sentiment Treebank.mwmpCNN exhibits the classification accuracy of 54.6%and 43.5%respectively for the multilabel classification task.
作者
周锦峰
叶施仁
王晖
ZHOU Jinfeng;YE Shiren;WANG Hui(School of Information Science and Engineering,Changzhou University,Changzhou,Jiangsu 213164,China)
出处
《计算机工程与应用》
CSCD
北大核心
2018年第22期133-138,149,共7页
Computer Engineering and Applications
基金
国家自然科学基金(No.61272367)
江苏省科技厅项目(No.BY2015027-12)
关键词
情感分析
多分类标注
卷积神经网络
深度学习
sentiment analysis
multi-category classification
convolutional neural network
deep learning