摘要
人脸识别技术可应用于各监控和安保领域,它涉及特征提取、识别模型等关键技术。其中特征提取方法直接影响识别效果,目前所用的特征提取方法存在特征表达不全面、计算复杂度高等问题。据此,提出一种基于WPDHOG金字塔的人脸特征提取方法,该方法结合小波包分解(Wavelet Packet Decomposition,WPD)、图像金字塔以及方向梯度直方图(Histograms of Oriented Gradients,HOG)对人脸图像特征进行有效表征,最终将WPD-HOG金字塔特征通过SVM分类器进行分类。通过在ORL人脸库上进行实验,与四种对比方法 HOG、HOG金字塔、FWPD-HOG以及FWPD-HOG金字塔进行比较,实验结果表明,WPD-HOG金字塔特征提取方法的识别率要高于对比方法,且在噪声方面具有较好的鲁棒性。
Face recognition technology can be applied in the field of monitoring and security,which involves key technologies such as feature extraction and recognition model.The feature extraction method has a direct influence on the recognition effect.At present,the feature extraction method has the problems of incomplete expression and high computational complexity.For solving this problem,this paper proposes a kind of facial feature extraction method:WPD-HOG pyramid.The WPD-HOG pyramid feature extraction method combines the Wavelet Packet Decomposition(WPD),image pyramid and Histograms of Oriented Gradients(HOG)together to characterize the face image feature.Finally,the WPD-HOG pyramid features are identified by the SVM classifier for face recognition.Experiments are conducted over ORL data set to demonstrate the proposed approach.Compared with the four benchmark methods:HOG,HOG pyramid,FWPD-HOG and FWPD-HOG pyramid,the experimental results show that the recognition performance,computation complexity and noise robustness of the proposed method are the best.
作者
刘文培
李凤莲
张雪英
田玉楚
LIU Wenpei;LI Fenglian;ZHANG Xueying;TIAN Yuchu(College of Information Engineering,Taiyuan University of Technology,Jinzhong,Shanxi 030600,China;School of Electrical Engineering and Computer Science,Queensland University of Technology,Queensland,Australia)
出处
《计算机工程与应用》
CSCD
北大核心
2018年第22期150-155,共6页
Computer Engineering and Applications
基金
山西省国际合作项目(No.2015081007)
2016年太原理工大学教改项目(No.24)
山西省优秀人才科技创新项目(No.201605D211021)
关键词
人脸识别特征提取
小波包分解
图像金字塔
方向梯度直方图
face recognition feature extraction
Wavelet Packet Decomposition(WPD)
image pyramid
Histograms of Oriented Gradients(HOG)