期刊文献+

面向人脸识别的WPD-HOG金字塔特征提取方法 被引量:4

WPD-HOG pyramid feature extraction method for face recognition
下载PDF
导出
摘要 人脸识别技术可应用于各监控和安保领域,它涉及特征提取、识别模型等关键技术。其中特征提取方法直接影响识别效果,目前所用的特征提取方法存在特征表达不全面、计算复杂度高等问题。据此,提出一种基于WPDHOG金字塔的人脸特征提取方法,该方法结合小波包分解(Wavelet Packet Decomposition,WPD)、图像金字塔以及方向梯度直方图(Histograms of Oriented Gradients,HOG)对人脸图像特征进行有效表征,最终将WPD-HOG金字塔特征通过SVM分类器进行分类。通过在ORL人脸库上进行实验,与四种对比方法 HOG、HOG金字塔、FWPD-HOG以及FWPD-HOG金字塔进行比较,实验结果表明,WPD-HOG金字塔特征提取方法的识别率要高于对比方法,且在噪声方面具有较好的鲁棒性。 Face recognition technology can be applied in the field of monitoring and security,which involves key technologies such as feature extraction and recognition model.The feature extraction method has a direct influence on the recognition effect.At present,the feature extraction method has the problems of incomplete expression and high computational complexity.For solving this problem,this paper proposes a kind of facial feature extraction method:WPD-HOG pyramid.The WPD-HOG pyramid feature extraction method combines the Wavelet Packet Decomposition(WPD),image pyramid and Histograms of Oriented Gradients(HOG)together to characterize the face image feature.Finally,the WPD-HOG pyramid features are identified by the SVM classifier for face recognition.Experiments are conducted over ORL data set to demonstrate the proposed approach.Compared with the four benchmark methods:HOG,HOG pyramid,FWPD-HOG and FWPD-HOG pyramid,the experimental results show that the recognition performance,computation complexity and noise robustness of the proposed method are the best.
作者 刘文培 李凤莲 张雪英 田玉楚 LIU Wenpei;LI Fenglian;ZHANG Xueying;TIAN Yuchu(College of Information Engineering,Taiyuan University of Technology,Jinzhong,Shanxi 030600,China;School of Electrical Engineering and Computer Science,Queensland University of Technology,Queensland,Australia)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第22期150-155,共6页 Computer Engineering and Applications
基金 山西省国际合作项目(No.2015081007) 2016年太原理工大学教改项目(No.24) 山西省优秀人才科技创新项目(No.201605D211021)
关键词 人脸识别特征提取 小波包分解 图像金字塔 方向梯度直方图 face recognition feature extraction Wavelet Packet Decomposition(WPD) image pyramid Histograms of Oriented Gradients(HOG)
  • 相关文献

参考文献7

二级参考文献89

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3孙涛,谷士文,费耀平.基于PCA算法的人脸识别方法研究比较[J].现代电子技术,2007,30(1):112-114. 被引量:14
  • 4刘兴华,蔡从中,袁前飞,肖汉光,孔春阳.基于支持向量机的乳腺癌辅助诊断[J].重庆大学学报(自然科学版),2007,30(6):140-144. 被引量:17
  • 5Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002.
  • 6Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03).
  • 7Heisele B, Ho P, Poggio T. Face recognition with support vector machines: Global versus component-based approach [ C ]//Proceedings of the Eighth IEEE International Con- ference on Computer Vision. 2001:688-694. 131-137.
  • 8Shen L, Bai L. MutualBoost learning for selecting Gabor features for face recognition [ J]. Pattern Recognition Let- ters, 2006,27(15) :1758-1767.
  • 9Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns[J]. Computer Vision-ECCV 2004, 2004,3021:469 -481.
  • 10Yang J, Frangi A F, Zhang D, et al. KPCA plus LDA: A complete kernel Fisher discriminant framework for feature ex- traction and recognition[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2005,27(2) :230-244.

共引文献97

同被引文献36

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部