期刊文献+

基于多方向显著子区域置信表决的多目标检测

Multi-object detection through multi-orientation saliency subregions voting by confidence
下载PDF
导出
摘要 多目标检测是智能交通监控系统的一项重要和挑战性的工作。提出一种基于多方向显著子区域置信表决的多目标检测方法。利用Gabor滤波提取目标四方向显著特征像素;根据多阈值条件确定每个目标的有效子区域及尺度;判断有效交集子区域和交集状态;加权融合交集面积占空比和有效交集子区域相对面积占空比,获得各个有效交集子区域置信表决系数;根据最大置信表决系数获得目标最优检测。采用实际交通场景采集的视频图像序列进行实验,结果表明该方法在邻近目标交互干扰和遮挡、目标阴影、非均匀光照及背景中相似色彩干扰等情况下,均具有鲁棒、准确的检测性能。 Multi-object detection under the smart traffic surveillance system is an important and challenging task.This paper presents a multi-object detection algorithm based on multi-orientation saliency subregion voting by confidence.Fourorientation saliency feature pixels are firstly extracted by Gabor filters.The valid subregions and scales of each object are further confirmed in terms of the multi-threshold criteria.And then valid intersection subregions and intersection states are confirmed.The duty ratios of intersection area and the relative duty ratios of valid intersection subregions are weighted and integrated to acquire the confidence vote coefficient for every subregion.The optimal detection is finally derived according to the maximum confidence vote.Experiments conducted on real traffic image sequences demonstrate that the proposed method is robust and accurate in multi-object detection under mutual disturbance and occlusion among adjacent objects,object shadow,non-uniform illumination and similar color disturbance in the background etc.
作者 路红 杨晨 费树岷 LU Hong;YANG Chen;FEI Shumin(School of Automation,Nanjing Institute of Technology,Nanjing 211167,China;School of Automation,Southeast University,Nanjing 210096,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第22期173-179,204,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61305011) 江苏省自然科学基金(No.BK20150793)
关键词 多目标检测 多方向显著子区域 交集状态判断 交集面积占空比 置信表决 multi-object detection multi-orientation saliency subregion intersection state judging duty ratios of intersection area voting by confidence
  • 相关文献

参考文献6

二级参考文献67

  • 1张修军,郭霞,金心宇.带标记矫正的二值图象连通域像素标记算法[J].中国图象图形学报(A辑),2003,8(2):198-202. 被引量:44
  • 2汪华琴,谈国新,钱小红,朱海燕.一种基于曲率尺度空间的自适应角点检测方法[J].计算技术与自动化,2007,26(2):123-127. 被引量:10
  • 3肖利平,曹炬,高晓颖.复杂海地背景下的舰船目标检测[J].光电工程,2007,34(6):6-10. 被引量:33
  • 4SHI Zhenwei, YU Xinran, JIANG Zhiguo, et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(8):4511-4523.
  • 5HUANG Gaopan, WANG Yangqing, ZHANG Yushuang, et al. Ship detection using texture statistics from optical satellite images[C]//2011 International Conference on Digital Image Computing Techniques and Applications. Queensland, Australia: IEEE, 2011:507-512.
  • 6TAN Min, GU Juanjuan, HU Xueyou, et al. 2-D DHT-based fast Gabor transform for image processing[C]//2010 Second IITA International Conference on Geoscience and Remote Sensing. Qingdao, China: IEEE, 2010:372-375.
  • 7RAD G R, SAMIEE K. Fast and modified image segmentation method based on active contours and Gabor filter[C]//2008 3rd International Conference on Information and Communication Technologies. Damascus, Syria: IEEE, 2008:1-5.
  • 8RAHMANI N, BEHRAD A. Automatic marine targets detection using features based on local Gabor binary pattern histogram sequence[C]//2011 1st International Conference on Computer and Knowledge Engineering. Mashhad, Iran:IEEE, 2011:195-201.
  • 9RAJADELL O, GARCIA-SEVILLA P, PLA F. Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):860-864.
  • 10LI Wei, DU Qian. Gabor-filtering-based nearest regularized subspace for hyperspetral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4):1012-1022.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部