期刊文献+

基于深度学习SDA的压缩感知图像重构方法 被引量:2

Image reconstruction in compressed sensing based on deep learning SDA approach
下载PDF
导出
摘要 为减少传统压缩感知对图像信号测量与重构的时间,提高重构精度,提出一种深度学习SDA的压缩感知框架,采用堆叠去噪自动编码器(SDA)作为无监督特征学习器,支持信号的线性和非线性测量,捕获特定信号的不同元素之间的统计依赖性;利用前馈深度神经网络代替传统重构算法,从训练数据中学习信号的结构化表示,实现图像信号重构。实验结果表明,与压缩感知SPL算法、D-AMP算法和TV算法比较,该方法峰值信噪比(PSNR)更高,且重构时间仅仅为0.002s,远低于其它3种算法。 To decrease the measurement and reconstruction time and improve the reconstruction accuracy of traditional compressive sensing,a compressed sensing framework based on deep learning SDA was proposed.Stacked denoising autoencoder(SDA)was used as an unsupervised feature learner,in which linear and non-linear measurements of the signal were supported,to capture the statistical dependencies between different elements of a given signal.The feed-forward neural network was used to replace the traditional reconstruction algorithm to learn the structured representation of the signal from the training data and to reconstruct the image signal.Experimental results show that the PSNR of the proposed method is higher than that of compressed sensing SPL algorithm,D-AMP algorithm and TV algorithm.And the reconstruction time is only 0.002 seconds,which is much lower than the other three algorithms.
作者 谢雪晴 XIE Xue-qing(School of Information Engineering,Chongqing Industry Polytechnic College,Chongqing 401120,China)
出处 《计算机工程与设计》 北大核心 2018年第11期3516-3519,3525,共5页 Computer Engineering and Design
基金 重庆市教委科学技术研究基金项目(KJ1603701) 重庆市社会科学规划基金项目(2017YBYS108) 重庆工业职业技术学院校级重点基金项目(GZY201709-2B)
关键词 压缩感知 深度学习 堆叠去噪自动编码器 无监督特征学习 结构化表示 compressed sensing deep learning stacked denoising autoencoder unsupervised feature learning structured representation
  • 相关文献

参考文献6

二级参考文献70

  • 1Donoho D.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
  • 2Candes E.Compressive sampling[C]//Proceedings of International Congress of Mathematicians.Madrid,Spain:European Mathematical Society Publishing House,2006:1433-1452.
  • 3Needell D,Vershynin R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Found Comput Math,2009,9:317-334.
  • 4Gan Lu.Block compressed sensing of natural images[C]//International Conference on Digital Siagnal Processing,Cardiff,UK,2007:403-406.
  • 5Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 6Candes E J,Romberg J.Sparsity and incoherence in compressive sampling[J].Inverse Problems,2007,23(3):969-985.
  • 7Tsaig Y,Donoho D L.Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
  • 8Ma J W.Compressed sensing by inverse scale space and curvelet thresholding[J].Applied Mathematics and Computation,2008,206(2):980-988.
  • 9PeyrèG.Best basis compressed sensing[J].IEEE Transactions on Signal Processing,2010,58(5):2613-2622.
  • 10Bergeaud F,Mallat S.Matching pursuit of image[C]//Proc of the IEEE International Conference on Image Processing,1995:53-56.

共引文献97

同被引文献29

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部