摘要
为处理随微阵列技术发展而急剧增长的肿瘤基因数据,实现对肿瘤基因数据的特征选择,结合集成特征选择和混合特征选择,提出一种Spark分布式计算框架的混合特征选择方法。利用F-score特征选择方法去除无关特征,进行初步特征选择,结合F-score、多分类支持向量机递归消除法、基于随机森林的特征选择3种方法得到最优的特征子集,并采用支持向量机对特征子集进行分类预测。实验结果表明,该方法能通过选择较少的基因达到较高的分类准确率。
In order to deal with the tumor gene data which grows rapidly with the development of microarray technology,and achieve the feature selection of tumor gene data,combined with integrated feature selection and mixed feature selection,a hybrid feature selection method of Spark distributed computing framework is proposed.The F-score feature selection method is used to remove the extraneous features,and the preliminary feature selection is carried out.The optimal feature subsets are obtained by integrating F-score,multi-class support vector machine recursive elimination method and random forest based feature selection,and the feature subset is classified and predicted by support vector machine.Experimental results show that this method can select fewer genes to achieve higher classification accuracy.
作者
汪丽丽
邓丽
余玥
费敏锐
WANG Lili;DENG Li;YU Yue;FEI Minrui(School of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China;Shanghai Key Laboratory of Power Station Automation Technology,Shanghai 200072,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2018年第11期1-6,共6页
Computer Engineering
基金
上海市科委重点项目(14DZ1206302)
关键词
肿瘤基因数据
Spark分布式计算框架
混合特征选择
集成特征选择
分类
tumor gene data
Spark distributed computing framework
hybrid feature selection
integrated feature selection
classification