期刊文献+

基于最长属性路径过滤的SPARQL查询优化 被引量:2

SPARQL Query Optimization Based on Longest Property Path Filtering
下载PDF
导出
摘要 SPARQL查询过程中产生的大量中间结果严重影响查询效率。针对该问题,提出一种两阶段的查询优化方法。在第一阶段,将查询内含有相同变量的联结划分为一块,通过计算每块内的选择度重新排列联结。在第二阶段,利用属性路径索引对剩余的联结进行中间结果过滤。实验结果表明,该方法能够有效减少查询的中间结果,提高查询的执行效率。 A large number of intermediate results during executing SPARQL query greatly affect the query efficiency.For this,a query optimization method with two phases is proposed.In the first phase,it divides a query that contains the same variable into a block by calculating the selectivity within each block to rearrange the join.In the second phase,it emploies the longest property path index to filter intermediate results.Experimental results show that the proposed method can effectively reduce the number of intermediate results and improve the query performance.
作者 林晓庆 张富 程经纬 LIN Xiaoqing;ZHANG Fu;CHENG Jingwei(School of Computer Science and Engineering,Northeastern University,Shenyang 110819,China;School of Information Engineering,Eastern Liaoning University,Dandong,Liaoning 118003,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第11期7-13,共7页 Computer Engineering
基金 国家自然科学基金(61672139) 辽宁省自然科学基金(2015020048)
关键词 资源描述框架 SPARQL查询 选择度 属性路径 三元组过滤 中间结果 Resource Description Framework(RDF) SPARQL query selectivity property path triple filtering intermediate result
  • 相关文献

参考文献1

二级参考文献13

  • 1朱敏,程佳,柏文阳.一种基于HBase的RDF数据存储模型[Cc]//ProceedingsoftheNDBC.2013.
  • 2Schmidt M, Meier M, Lausen G. Foundations of SPAROL query optimization [ DB/OL]. [2009-01 26]. The Computing Re- search. Repository, http://arxiv, org/abs/0812. 3788.
  • 3Abadi D J, Marcus A,Madden S R, et al. Scalable semantic web data management using vertical partitioning [C]//Chan C Y. Proceedings of the 33rd International Conference on Very Large Data Bases. New York: ACM, 2007 .. 411-422.
  • 4Weiss C, Karras P, Bemstein A. Hexastore: sextuple indexing for semantic web data anagementl [C]//Hass L. Proceedings of the 34rd International Conference on Very Large Data Bases. New York: ACM, 2008 : 1008-1019.
  • 5Hatting O. Querying trust in RDF Data with tSPARQL[C] ff Proceedings of 6th European Semantic Web Conference (ES- WC 09). Berlin: Springer, 2009 : 5-20.
  • 6Stocker M,Seaborne A,et al. SPARQL basic graph pattern Op- timization using selectivity estimation[C]//Liu Y H. www' 08. New York: ACM, 2008 : 595-604.
  • 7Guo Y,Pan Z, Heflin J. LUBM A benchmark for OWl. knowl- edge base systems[J]. Web Semantics: Science, Services and A- gents on the World Wide Web, 2005,3 (2) : 158-182.
  • 8Huang H, Liu C. Selectivity estimation for SPARQL graph pat- tern[C] // Proceedings of the 19th International Conference on World Wide Web. ACM,2010:1115-1116.
  • 9Papailiou N, Konstantinou I, Tsoumakos D, et al. H2RDF: adap- tive query processing on RDF data in the cloud[C]//Proce dings of the 21st International Conference Companion on World Wide Web. ACM, 2012 .. 397-400.
  • 10Abraham J, Brazier P,Chebotko A, et al. Distributed storage and querying techniques for a Semantic Weh of scientific workflow provenance[C]//Services Computing (SCC),2010 IEEE Inter national Conference on. IEEE, 2010.. 178 185.

共引文献3

同被引文献21

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部