期刊文献+

基于粒子群优化的朴素贝叶斯改进算法 被引量:9

Improved Native Bayes Algorithm Based on Particle Swarm Optimization
下载PDF
导出
摘要 针对朴素贝叶斯(NB)算法因条件独立性的理想式假设引起分类性能降低的问题,提出一种改进的粒子群优化-朴素贝叶斯(PSO-NB)算法。在文本预处理时,引入权重因子、类内和类间离散因子进行属性约简,基于NB加权模型,将条件属性的词频比率作为其初始权值,利用PSO算法迭代寻找全局最优特征权向量,并以此权向量作为加权模型中各个特征词的权值生成分类器。运用经典数据集对PSO-NB算法进行性能分析,结果表明,改进算法可有效减少冗余属性,降低计算复杂度,具有较高的准确率和召回率。 Aiming at the problem of classification performance degradation caused by the idealized assumption of conditional independence of Naive Bayes(NB)algorithm,an improved Particle Swarm Optimization-Native Bayes(PSO-NB)algorithm is proposed.In text preprocessing,weight factor,intra-class and inter-class discrete factors are introduced for attribute reduction.Based on NB weighted model,the word-frequency ratio of conditional attribute is used as its initial weight,and PSO algorithm is used to iteratively find global optimal feature weight vector.The vector is used as a weight value to generate a classifier for each feature word in the weighting model.The performance analysis of PSO-NB algorithm is done using classical dataset.Result shows that the improved algorithm can effectively reduce redundant attributes,reduce computational complexity,and has high accuracy and recall rate.
作者 邱宁佳 李娜 胡小娟 王鹏 孙爽滋 QIU Ningjia;LI Na;HU Xiaojuan;WANG Peng;SUN Shuangzi(College of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130022,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第11期27-32,39,共7页 Computer Engineering
基金 吉林省科技发展计划重点科技攻关项目(20150204036GX) 吉林省省级产业创新专项资金(2017C051)
关键词 朴素贝叶斯 互信息 属性约简 粒子群优化算法 权值优化 Native Bayes(NB) mutual information attribute reduction Particle Swarm Optimization(PSO)algorithm weight optimization
  • 相关文献

参考文献8

二级参考文献77

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 4王卫玲,刘培玉,初建崇.一种改进的基于条件互信息的特征选择算法[J].计算机应用,2007,27(2):433-435. 被引量:23
  • 5Langley P. Selection of relevant features in machine learning [C] //Proc of the AAAI Fall Symposium on Relevance. Menlo Park, CA: AAAI, 1994:1-5.
  • 6Dash M, Liu H. Feature selection for classification [J]. International Journal of Intelligent Data Analysis, 1997, 1 (3): 131-156.
  • 7Pudil P, Novovicova J. Novel methods for subset selection with respect to problem knowledge[J]. IEEE Intelligent Systems, 1998, 13(2): 66-74.
  • 8Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF [J]. Machine Learning, 2003, 53(1): 23-69.
  • 9Hall M. Correlation-based feature selection for discrete and numeric class machine learning [C]//Proc of the 7th Int Conf on Machine Learning. San Francisco: Morgan Kaufmann, 2000:359-366.
  • 10Mitra P, Murthy C A, Pal S K. Unsupervised feature selection using feature similarity [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(3) : 301-312.

共引文献146

同被引文献65

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部