期刊文献+

基于改进极端随机树的异常网络流量分类 被引量:28

Abnormal Network Traffic Classification Based on Improved Extremely Random Tree
下载PDF
导出
摘要 为更有效地识别网络流量中少量的异常流量样本,提出一种基于改进极端随机树的异常流量分类方法。计算数据中每个特征的信息增益率,获得较低维度的特征集。在此基础上,使用随机训练方法训练分类模型,对一部分基分类器使用全部样本进行训练,对另一部分则使用经过重采样的数据进行训练,并使用加权统计的方法修改其最后的投票规则。实验结果表明,该方法在NSL-KDD数据集上可达到0. 995 6的精确率,与ET和RF集成分类算法相比,其在数据样本较少的类别上分类效果更好。 In order to identify a small number of abnormal traffic samples in network traffic more effectively,an abnormal traffic classification method based on improved extremely random trees is proposed in this paper.The information gain rate of each feature in the data is calculated and the feature set of lower dimensions is obtained.On this basis,the classification model is trained with the use of random training method.For parts of the base classifiers,all training samples are used,and for the others,they are trained with the resampling data.At the same time,the weighted statistical method is used to modify the final voting rules for those base classifiers using the resampling data.Experimental results show that the proposed method can achieve the accurate rate of 0.995 6 on the NSL-KDD data sets.Meanwhile,compared with other ensemble classification algorithms such as ET and RF,this method obtains better classification results when dealing with fewer data samples.
作者 韦海宇 王勇 柯文龙 俸皓 WEI Haiyu;WANG Yong;KE Wenlong;FENG Hao(School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;School of Information and Communication,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Guangxi Colleges and Universities Key Laboratory of Cloud Computing and Complex Systems;Guilin University of Electronic Technology,Guilin,Guangxi 541004,China);Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第11期33-39,共7页 Computer Engineering
基金 国家自然科学基金(61662018 61163058) 广西自然科学基金(2016GXNSFAA380153) 广西高校云计算与复杂系统重点实验室研究课题(14103 15208) 广西云计算与大数据协同创新中心研究课题(YD16303)
关键词 异常网络流量 流量分类 特征选择 随机训练 极端随机树 abnormal network traffic traffic classification feature selection random training extremely random tree
  • 相关文献

参考文献5

二级参考文献34

  • 1Wang B,Kee C C,Srinivasan V,et al.Information Coverage in Randomly Deployed Wireless Sensor Networks[J].IEEE Transactions on Wireless Communications,2007,6(8):2994-3004.
  • 2Xu Xiaochun,Sahni S.Approximation Algorithms for Sensor Deployment[J].IEEE Transactions on Computers,2007,56(12):1681-1695.
  • 3毛国君,段立娟,王实,等.数据挖掘原理和算法[J].北京:清华大学出版社,2007.
  • 4Barakat C,Thiran P,Iannaccone G,et al.Modeling InternetBackbone Traffic at the Flow Level[J].IEEE Transactions onSignal Processing Special Issue on Networking,2003,51(8):2111-2124.
  • 5Estan C,Savage S,Varghese G.Automatically Inferring Pattern ofResource Consumption in Network Traffic[C]//Proceedings ofSIGCOMM’03.Karlsruhe,Germany:ACM Press,2003:137-148.
  • 6Brauckhoff D,Dimitropoulos X,Wagner A.Anomaly Extraction inBackbone Networks Using Association Rules[C]//Proceedings ofIMC’09.Chicago,Illinois,USA:[s.n.],2009.
  • 7Zhang Yin,Singh S,Sen S,et al.Online Identification ofHierarchical Heavy Hitters:Algorithms,Evaluation,andApplications[C]//Proceedings of the 4th ACM Conference onInternet Measurement.[S.l.]:ACM Press,2004.
  • 8Cormode G,Korn F,Muthukrishnan S,et al.Diamond in theRough:Finding Hierarchical Heavy Hitters in Multi dimensionalData[C]//Proceedings of SIGMOD’04.Paris,France:[s.n.],2004:155 166.
  • 9Silveira F,Diot C,Taft N,et al.ASTUTE:Detecting a DifferentClass of Traffic Anomalies[C]//Proceedings of SIGCOMM’10.New Delhi,India:ACM Press,2010.
  • 10Bakos G,Berk V.Early Detection of Internet Worm Activity byMetering ICMP Destination Unreachable Activity[C]//Proceedingsof SPIE Conference on Sensors,and Command,Control,Communications and Intelligence.Orlando,USA:[s.n.],2002:33-42.

共引文献51

同被引文献229

引证文献28

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部