期刊文献+

UFMC系统的符号定时同步改进算法

Improved Symbol Timing Synchronization Algorithm for UFMC System
下载PDF
导出
摘要 在通用滤波多载波(UFMC)系统中,传统符号定时同步算法精度较低,适用性较差。为此,根据UFMC符号的特性,提出一种改进的符号定时同步算法。通过分析训练符号得出首尾数据之和等于中间数据的特性,参考传统算法利用数据的重复特性,结合两者来增加训练符号数据的利用率并减小噪声的影响。同时,加入滑动平均窗操作以改善平台效应。仿真结果表明,相对基于S&C的符号同步算法,该算法符号定时更精确,具有更平滑的定时测度函数曲线以及更低的均方根误差。 Aiming at the problem of low precision and poor applicability of traditional symbol timing synchronization algorithm in Universal Filtered Multi-Carrier(UFMC)system,an improved symbol timing synchronization algorithm is proposed according to the characteristics of UFMC symbols.After analyzing the training symbols,the characteristic is get that the sum of the first part and the last part is equal to the middle part.By referring to the characteristics of data duplication in traditional algorithms,the utilization rate of the training symbols data is increased and the influence of noise is reduced by combining the two characteristics.At the same time,sliding average window operation is added to improve the platform effect.Simulation results show that compared with S&C based symbol synchronization algorithm,this algorithm has more accurate symbol timing,smoother timing measure function curve and lower root mean square error.
作者 余翔 周志义 高燕妮 YU Xiang;ZHOU Zhiyi;GAO Yanni(Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第11期105-108,114,共5页 Computer Engineering
基金 国家科技重大专项"低功耗大连接5G系统概念样机研发"(2017ZX03001004-004)
关键词 通用滤波多载波 符号定时同步 训练序列 S&C算法 定时测度函数 Universal Filtered Multi-Carrier(UFMC) symbol timing synchronization training sequences S&C algorithm timing measure function
  • 相关文献

参考文献2

二级参考文献105

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献742

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部