期刊文献+

改进的广义压缩邻近点算法及收敛性证明

下载PDF
导出
摘要 本文运用压缩邻近点算法,求解极大单调算子的零点,提出如下迭代格式:x_(n+1)=λ_nf(x_n)+γ_nx_n+δ_nJ_(cn)(x_n).在Hilbert空间中,证明了该算法的强收敛性.
出处 《数学学习与研究》 2018年第21期11-12,共2页
  • 相关文献

参考文献1

二级参考文献20

  • 1Candes,E J,Romberg,J,Tao,T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,(02):489-509.
  • 2Candes,E J,Romberg,J,Tao,T. Stable signal recovery from incomplete and inaccurate measurements[J].Comm Pure Applied Math,2006,(02):1207-1223.
  • 3Candes,E J,Tao,T. Near-optimal signal recovery from random projections:Universal encoding strategies[J].? IEEE Trans Inform Theory,2006,(12):5406-5425.
  • 4Candes,E J,Wakin,M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008.21-30.
  • 5Cipra,B A. e1-magic[J].SIAM News,2006,(09).
  • 6Combettes,P L,Wajs,R. Signal recovery by proximal forward-backward splitting[J].MULTISCALE MODELING & SIMULATION,2005,(04):11681200.
  • 7Donoho,D. Compressed sensing[J].IEEE Transactions on Information Theory,2006,(04):1289-1306.
  • 8Friedman,J,Hastie,T,Tibshirani,R. A note on the group lasso and a sparse group lasso[Z].arXiv:1001 0736V1,.
  • 9Geobel,K,Kirk,W A. Topics in Metric Fixed Point Theory[A].Cambridge University Press,1990.
  • 10Hebiri,M,van de Geer,S. The smooth-lasso and other e1+e2-penalized methods[J].Electron J Statist,2011.11841226.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部