摘要
采用拉格朗日方法推导出抛物最优控制问题的最优性条件,然后运用有限体积元和变分离散相结合的方法得到离散的最优性条件,给出最优解在L2范数意义下的误差估计,并通过数值算例验证了误差估计的理论结果.
This paper presents the finite volume element method(FVEM)to solve the optimal control problems governed by the parabolic equation.The optimality conditions are given by the Lagrange method.Variational discretization and the FVEM are applied to discretize the optimality conditions.Optimal order error estimates in the sense of L 2 norm are obtained.Numerical examples are provided to confirm the effectiveness of the method and the theoretical results.
作者
张倩
ZHANG Qian(Institute of Information Technology,Nanjing University of Chinese Medicine,Nanjing 210023,China)
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2018年第4期13-16,共4页
Journal of Yangzhou University:Natural Science Edition
基金
江苏省高校自然科学基金资助项目(17KJB110014)
江苏省自然科学基金青年基金资助项目(BK20160880)
江苏省"大规模复杂系统数值模拟"实验室资助项目(201704)
关键词
抛物最优控制
误差估计
有限体积元
变分离散
parabolic optimal control
error estimate
finite volume element
variational discretization