摘要
对顶点带属性的网络中潜在的链接进行预测,提出一种基于隐空间映射的网络链接预测方法.首先将以邻接矩阵表示的拓扑空间和以属性信息表示的属性空间映射到同一个低维隐空间,使得映射后的隐空间尽量保持顶点间在拓扑空间和属性空间的相似性信息,然后根据顶点在隐空间的向量表达,计算顶点之间的相似度.结果表明,该方法预测精度高且运行时间短.
This paper presents a new latent space mapping based algorithm for link prediction on networks with nodes attributes.The algorithm maps the topological space and the attribute space to a lower dimensional latent space,so that the nodes’similarities in the original spaces are reserved in the latent space.Then similarity between nodes can be obtained by calculating the distances between the nodes in the latent space.Such similarity can reflect the potential characteristics of topology information and attribute information.This experimental results show that it can obtain higher quality results on networks with nodes attributes than other algorithms.
作者
盛俊
陈崚
SHENG Jun;CHEN Ling(School of Policy Government&International Affairs,George Mason University,Fairfax 22030,USA;School of Information Engineering,Yangzhou Polytechnic College,Yangzhou 225000,China;College of Information Engineering,Yangzhou University,Yangzhou 225127,China)
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2018年第4期57-60,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(61379066
61472344
61402395)
江苏省自然科学基金资助项目(BK20140492)
江苏省教育厅自然科学基金资助项目(13KJB520026)
关键词
链接预测
顶点带属性
隐空间
交叉迭代
映射矩阵
link prediction
node with attributes
latent space
alternatively iterating
mapping matrix