期刊文献+

基于动态时序的特征复合协同过滤算法

Feature Composite Collaborative Filtering Algorithm Based on Dynamic Timing
下载PDF
导出
摘要 协同过滤算法是推荐系统中研究较为广泛和深入的算法,为解决传统协同过滤算法无法处理时间动态变化的问题,提出一种新的改进算法:SpecialTSVD++算法。在传统SVD++算法中分别融入用户评分的时间信息、用户和物品的时间偏置,并且加入用户特征信息,增强数据与时间的关联度,体现数据的动态变化,并且结合用户属性产生个性化推荐结果。Movielens-10m数据集上的实验结果表明,SpecialTSVD++算法通过对时间动态变化带来的推荐影响进行优化处理,使推荐结果更加贴近用户当前需求,能显著提升推荐系统准确率。 Collaborative filtering algorithm is a widely studied and in-depth algorithm in the recommendation system,but the traditional collaborative filtering algorithm can’t meet the dynamic changes in the future time,So the algorithm of this article integrates the time information of the user's rating,the user's characteristic information,and the time bias of the user and the item into the traditional SVD++algorithm.And create a new and improved algorithm:SpecialTSVD++algorithm,which enhances the correlation between data and time,reflects the dynamic changes of the data,and generates personalized recommendation results in combination with user attributes.The experimental results on the Movielens-10m dataset show that the SpecialTSVD++algorithm of this paper optimizes the impact of the dynamic changes in time,and the recommendation results are closer to the user's current needs,which significantly improves the accuracy of the recommendation system.
作者 龚成 王洁 汪丽君 GONG Cheng;WANG Jie;WANG Li-jun(Department of Information,Beijing University of Technology,Beijing 100124,China)
出处 《软件导刊》 2018年第11期56-59,64,共5页 Software Guide
关键词 SVD++ 协同过滤 动态时序 用户特征 推荐系统 SVD++ collaborative filtering temporal dynamics user characteristics recommender systems
  • 相关文献

参考文献4

二级参考文献59

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 4邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 5Schafer J B, Konstan J A, Riedl J. E-commerce recommendation applications [J].Data Mining and Knowledge Discovery, 2001, 5(1-2) : 115-153.
  • 6Karypis G. Evaluation of item-based top-n recommendation algorithms [ C ]//Proceedings of the 10th International Conference on Information and Knowledge Management. New York: ACM Press, 2001: 247-254.
  • 7Sarwar B M, Karypis G, Konstan J A, et al. Analysis of Recommendation Algorithms for E-Commerce [ C ]// Proceedings of the 2nd ACM conference on Electronic commerce. New York: ACM Press, 2000: 158-167.
  • 8Sarwar B, Karypis G, Konstan J, et al. hem-based collaborative filtering recommendation algorithms [ C ]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285-295.
  • 9Sarwar B M. Sparsity, sealability, and distribution in recommender systems [ D ]. Minneapolis: University of Minnesota, 2001.
  • 10Sarwar B M, Karypis G, Konstan J A, et al. Application of dimensionality reduction in recommender system-a case study[ R]. Minneapolis : University of Minnesota, 2000.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部