期刊文献+

智能混合动力汽车经济性自适应巡航控制策略研究 被引量:4

Research on Control Strategy for Hybrid Electric Vehicle's Economy-Oriented Adaptive Cruise
下载PDF
导出
摘要 针对智能混合动力汽车自适应巡航过程中的能量控制策略问题,结合模型预测控制在处理多目标、多约束优化问题方面的优势和粒子群算法运算量小、收敛快的特点,将粒子群算法作为模型预测控制的滚动优化方法,构造基于模型预测控制的粒子群算法.仿真结果表明,文中算法能够使绝大部分工况点落在较低燃油消耗率区域,只有少部分工况点落在非经济区域,虽然多消耗了1.06%的燃油,但在运算速度上却获得了60.3%的提升. Energy management strategy was studied for intelligent hybrid electric vehicle during adaptive cruise.A particle swarm optimization(PSO)algorithm based nonlinear model predictive control(MPC)was proposed.Combining the advantage of MPC in solving multi-object and multi-restriction optimization problem with the characteristic of PSO in small operand and high efficiency,the PSO was taken as the roll optimization method to form a PSO based MPC algorithm.Simulation results show that,the algorithm can make most car operation focus in low fuel consumption and can speed up the calculation process.
作者 安全 王翔宇 李亮 AN Quan;WANG Xiang-yu;LI Liang(State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing,100084,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2018年第A01期133-136,共4页 Transactions of Beijing Institute of Technology
关键词 粒子群算法 模型预测控制 混合动力汽车 自适应巡航控制 能量控制策略 particle swarm optimization(PSO) model predictive control(MPC) hybrid electric vehicle(HEV) adaptive cruise control(ACC) energy management strategy(EMS)
  • 相关文献

参考文献2

二级参考文献19

  • 1Hui S. Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic al- gorithm[J]. Engineering Applications of Artificial Intel- ligence, 2010,23(1) :27 - 33.
  • 2Sundstr6m O, Ambtihl D, Guzzella L. On implemen- tation of dynamic programming for optimal control problems with final state constraints [J]. Oil & Gas Science and Technology-Revue de l'Institut Francais du Petrole, 2010,65(1) :91 - 102.
  • 3G6kce K, Ozdemir A. An instantaneous optimization strategy based on efficiency maps for internal combustion engine/battery hybrid vehicles[J]. Energy Conversion and Management, 2014,81 .. 255 - 269.
  • 4Lian J, Han H, Li L, et al. Research on optimal control method of hybrid electric vehicles [J]. Simulation, 2013,89(9) :1137 - 1146.
  • 5Huang Y J, Yin C L, Zhang J W. Design of an energy management strategy for parallel hybrid electric vehicles using a logic threshold and instantaneous optimization method [ J ]. International Journal of Automotive Technology, 2009,10(4) :513 - 521.
  • 6Serrao L, Onori S, Rizzoni G. ECMS as a realization of Pontryagin's minimum principle for HEV control[C]// Proceedings of the 2009 Conference on American Control Conference. [S. l. ] : IEEE, 2009 .. 3964 - 3969.
  • 7Zhang Y, Lin W C, Chin Y K S. A pattern-recognition approach for driving skill characterization [J]. IEEE Transactions on Intelligent Transportation Systems, 2010,11(4):905 - 916.
  • 8Gurkaynak Y, Khaligh A, Emadi A. Neural adaptive control strategy for hybrid electric vehicles with parallel powertrain[C] // Proceedings of Vehicle Power and Propulsion Conference (VPPC). [S. l. ].. IEEE, 2010.. 1-6.
  • 9Lian J, Zhou Y, Ma T, et al. Research on data monitoring system of hybrid electric vehicle[J]. Sensor Letters, 2011,9(5) :2012 - 2016.
  • 10Zimmermann H J. Fuzzy set theory and its applications [M]. Boston: Kluwer Academic Publishers, 2011.

共引文献31

同被引文献30

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部