期刊文献+

个性化(α,l)-多样性k-匿名隐私保护模型 被引量:14

Personalized(α,l)-diversity k-anonymity Model for Privacy Preservation
下载PDF
导出
摘要 针对传统隐私保护模型对个性化匿名缺乏考虑的问题,对现有的两种个性化匿名机制进行了分析。在k-匿名和l-多样性匿名模型的基础上,提出一种个性化(α,l)-多样性k-匿名模型来解决存在的问题。在该模型中,依据敏感程度的不同,对敏感属性的取值划分类别;设置相应的约束条件,并为特定的个体提供个性化的隐私保护。实验结果表明,所提模型在有效提供个性化服务的同时,具有更强的隐私保护能力。 Aiming at the problem that traditional privacy preservation model is lack of considering the personalized anonymity,this paper analyzed the existing two personalized anonymity mechanisms.On the basis of k-anonymity and l-diversity model,a personalized(α,l)-diversity k-anonymity model was proposed to solve the existing problems.In the proposed model,the sensitive attribute values are divided into several categories according to their sensitivities,each cate-gory is assigned with corresponding constraints,and the personalized privacy preservation is provided for specific individuals.The experimental results show that the proposed model can provide stronger privacy preservation while supp-lying personalized service efficiently.
作者 曹敏姿 张琳琳 毕雪华 赵楷 CAO Min-zi;ZHANG Lin-lin;BI Xue-hua;ZHAO Kai(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Department of Medical Engineering and Technology,Xinjiang Medical University,Urumqi 830011,China)
出处 《计算机科学》 CSCD 北大核心 2018年第11期180-186,共7页 Computer Science
基金 国家自然科学基金(61562088) 新疆维吾尔自治区科技厅项目(2017D01C232) 新疆维吾尔自治区高校科研计划项目创新团队(XJEDU2017T002) 新疆维吾尔自治区高校计划项目(XJEDU2017M005) 赛尔网络下一代互联网技术创新项目(NGII20170325)资助
关键词 隐私保护 K-匿名 l-多样性 个性化匿名 泛化 Privacy preservation k-anonymity l-diversity Personalized anonymity Generalization
  • 相关文献

参考文献6

二级参考文献175

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Samarati P,Sweeney L.Generalizing data to provide anonymity when disclosing information (abstract)[A].Proceedings of the 17th ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems[C].Seattle,WA,USA:IEEE press,1998.188.
  • 3Samarati P.Protecting restondents' identities in microdata release[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(6):1010-1027.
  • 4Tiancheng Li,Ninghui Li.Towards optimal k-anonymization[J].Data and Knowledge Engineering,2008,65(1):22-39.
  • 5Machanavajjhala A,Gehrke J,Kifer D.L-diversity:privacy beyond k-anonymity[A].Proceedings of the 22nd International Confence e on Data Engineering[C].Atlanta,GA,USA:IEEE Press,2006.24-36.
  • 6Truta T M,Vinay B.Privacy protection:p-sensitive kanonymity property[A].Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW)[C].Washington,DC,USA:IEEE Computer Society,2006.94.
  • 7Wong C R,Li J,Fu A,et al.(α,k)-anonymity:an enhanced k-anonymity model for privacy preserving data publishing[A].Proceedings of the 12th ACM SIGKDD Conference[C].Philadelphia,PA:ACM Press,2006.754-759.
  • 8Ninghui Li,Tiancheng Ii,Venkatasubramanian S.t-Closeness:privacy beyond k-anonymity and l-diversity[A].Proceedings of the 23rd International Conference on Data Engineering (ICDE)[C].Istanbul,Turkey:IEEE Press,2007.106-115.
  • 9Xiaokui Xiao,Yufen Tao.Personalized privacy preservation[A].Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data[C].Chicago,Illinois,USA:ACM Press,2006.229-240.
  • 10Zude Li,Guoqiang Zhan,Xiaojun Ye.Towards an anti-inference (k,l)-anonymity model with value association rules[A].Database and Expert Systems Applications (DEXA)[C].Krakow,Poland:Springer-Verlag,Berlin Heidelberg,2006.883-893.

共引文献181

同被引文献112

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部