期刊文献+

基于核密度估计的K-CFSFDP聚类算法 被引量:13

K-CFSFDP Clustering Algorithm Based on Kernel Density Estimation
下载PDF
导出
摘要 快速搜索和发现密度峰值的聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP)是一种新的基于密度的聚类算法,它通过发现密度峰值来有效地识别类簇中心,具有聚类速度快、实现简单等优点。针对CFSFDP算法的准确性依赖于数据集的密度估计和截断距离(dc)的人为选择问题,提出一种基于核密度估计的KCFSFDP算法。该算法利用无参的核密度估计分析数据点的分布特征并自适应地选取dc,从而搜索和发现数据点的密度峰值,并以峰值点数据作为初始聚类中心。基于4个典型数据集的仿真结果表明,K-CFSFDP算法比CFSFDP,K-means和DBSCAN算法具有更高的准确度和更强的鲁棒性。 The CFSFDP(Clustering by Fast Search and Find of Density Peaks)is a new density-based clustering algorithm,it can identify the cluster centers effectively by finding the density peaks,and it has the advantages of fast clustering speed and simple realization.The accuracy of CFSFDP algorithm depends on the density estimation in the dataset and cut off distance(dc)of artificial selection.Therefore,an improved K-CFSFDP algorithm based on kernel density estimation was presented.The algorithm uses non parametric kernel density to analyze distribution of data points and selects the dc adaptively to search and find the peak density of data points,with the peak point data as the initial cluster centers.The simulated results on 4 typical datasets show that the K-CFSFDP algorithm has better performance in accuracy and better robustness than CFSFDP,K-means and DBSCAN algorithm.
作者 董晓君 程春玲 DONG Xiao-jun;CHENG Chun-ling(College of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机科学》 CSCD 北大核心 2018年第11期244-248,共5页 Computer Science
关键词 聚类 核密度估计 密度峰值 聚类中心 Clustering Kernel density estimation Density peak Cluster center
  • 相关文献

参考文献5

二级参考文献234

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html.
  • 3Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf.
  • 4Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011.
  • 5Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf.
  • 6Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation.
  • 7World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf.
  • 8Big Data Across the Federal Government [EB/OL]. [2012-10-02]. http://www, whitehouse, gov/sites/default/ files/microsites/ostp/big_data fact sheet_final_ 1. pdf.
  • 9UN Global Pulse. Big Data for Development:Challenges Opportunities [R/OL]. [ 2012-10-02 ]. http://www. unglobalpulse, org/proj ects/BigDataforDevelopment.
  • 10Times N Y. The age of big data fEB/OLd. [2012-10 -02]. http://www, nytimes, com/2012/02/12/sunday review/big- datas-impact in-the-world, html?pagewanted=all.

共引文献3568

同被引文献107

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部