期刊文献+

结合核函数与非线性偏微分方程的图像去噪方法 被引量:3

Image Denoising Method Combining Kernel Function and Nonlinear Partial Differential Equation
下载PDF
导出
摘要 传统的非线性扩散滤波方法在图像去噪时使用传统的梯度算子,易导致细节缺失。针对该缺点,以非线性偏微分方程和图像结构信息为基础,构造一类带有自适应权值的非线性扩散滤波去噪方式。这种方式选用多方向的拉普拉斯算子模板,结合核函数,自适应地调节权重系数;利用非局部信息选取合适的搜索窗宽,以减小图像噪声的影响。实验证明,该方法既能较好地保存图像纹理细节,又可以达到很好的去噪效果。 The traditional nonlinear diffusion filtering methods use the traditional gradient operator in image denoising,which may easily lead to missing details.In view of this shortcoming,a denoising method based on nonlinear diffusion filter was constructed according to the nonlinear partial differential equation and the image structure information.In this method,the kernel function is used to adaptively adjust the weight coefficient in the multi direction Laplasse operator template,and the influence of image noise is weaken by selecting the appropriate search window width by using the nonlocal information.The experimental results show that this method can not only save the image texture details,but also achieve good denoising results.
作者 陈鹏 张建伟 CHEN Peng;ZHANG Jian-wei(College of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《计算机科学》 CSCD 北大核心 2018年第11期278-282,共5页 Computer Science
基金 国家自然科学基金项目:空间约束的非对称多元混合模型图像富先验学习与反问题研究(61672293)资助
关键词 非线性偏微分方程 图像去噪 拉普拉斯算子 核函数 非局部信息 Nonlinear partial differential equation Image denoising Laplasse operator Kernel function Non-local information
  • 相关文献

参考文献4

二级参考文献33

  • 1芮挺,王金岩,沈春林,丁健.采用离散余弦变换的小波图像去噪方法[J].光电工程,2005,32(1):51-54. 被引量:9
  • 2Licw A W C, Yah H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J]. IEEE Trans on Medical Imaging, 2003, 22(19): 1063-1075.
  • 3Kim C, You B J, Jeong M H, et al. Color segmentation robust to brightness variations by using B-spline curve modeling [J]. Pattern Recognition, 2008, 41(1) : 22-37.
  • 4Jungke M, Seelen W V, Bielke G, et al. A system for the diagnostic use of tissue characterizing parameters in NMR-tomography [C] //Proc of Information Processing in Medical Imaging. Berlin: Springer, 1987:471-481.
  • 5Collewet G, Davenel A, Toussaint C, et al. Correction of intensity nonuniformity in spin-echo T1 weighted images[J]. Magnetic Resonance Imaging, 2002, 20(4):365-373.
  • 6Tincher M, Meyer C R, Gupta R, et al. Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI [J]. IEEE Trans on Medical Imaging, 1993, 12(2): 361-365.
  • 7Cohen S M, DuBois R M, Zeineh M M. Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging [J]. Human Brain Mapping, 2000, 10(4): 204- 211.
  • 8Vokurka E A, Thacker N A, Jackson A. A fast model independent melhod for automatic correction of intensity nonuniformity in MRI data[J]. Journal of MagneticResonance, 1999, 10(3):550-562.
  • 9Ashburner J, Friston K J. Voxel-based morphometry: The methods[J]. Neuroimage, 2000, 11(6): 805 821.
  • 10Wells W M I, Grimson W E L, Kikinis R. Adaptive segmentation of MRI data [J]. IEEE Trans on Medical Imaging, 1996, 15(4): 429-442.

共引文献31

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部