期刊文献+

结合GPU技术的并行CP张量分解算法 被引量:1

Parallel CP Tensor Decomposition Algorithm Combining with GPU Technology
下载PDF
导出
摘要 随着高维数据的涌现,张量和张量分解方法在数据分析领域中受到了广泛关注。然而,张量数据的高维度和稀疏特性,导致算法的复杂度较高,阻碍了张量分解算法在实际中的应用。许多学者通过引入并行计算来提升张量分解算法的计算效率。在现有研究的基础上,给出一种简化计算Khatri-Rao乘积的GPU并行CP张量分解算法,称为ParSCP-ALS。在模拟数据集和真实数据集上的实验结果显示,相比现有并行算法,文中设计的ParSCP-ALS算法能有效提高CP张量分解的计算效率,其中在Movielens数据集上的计算时间减少了约58%。 With the emergence of high-dimensional data,tensor and tensor decomposition have draw widespread attention in the field of data alanlysis.The high dimensionality and sparsity of tensor data results in a high computational complexity of tensor methods,which becomes an obstacle to the application of tensor decomposition in practical.Many researchers have introduced the parallel computing methods to improve the efficiency of tensor decomposition algorithm.Based on the existing research,this paper presented a GPU parallel CP tensor decomposition algorithm through simply calculating Khatri-Rao product,called ParSCP-ALS algorithm.The experimental results show that the proposed ParSCP-ALS algorithm can effectively improve the computational efficiency of CP tensor decomposition compared with the existing parallel algorithm.On the Movielens data set,the ParSCP-ALS algorithm reduces the computational time by about 58%compared with the existing parallel algorithm.
作者 武昱 闫光辉 王雅斐 马青青 刘宇轩 WU Yu;YAN Guang-hui;WANG Ya-fei;MA Qing-qing;LIU Yu-xuan(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730030,China)
出处 《计算机科学》 CSCD 北大核心 2018年第11期298-303,317,共7页 Computer Science
基金 国家自然科学基金项目(61662066 61163010)资助
关键词 CP张量分解 CP-ALS算法 GPU CUDA CP tensor decomposition CP-ALS GPU CUDA
  • 相关文献

参考文献1

二级参考文献56

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献211

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部