期刊文献+

网络异构信息的张量分解聚类方法 被引量:2

Tensor decomposition based clustering method for heterogeneous information in networks
下载PDF
导出
摘要 提出基于张量分解的聚类算法,能够同时处理网络中多类型、多语义关系的异构信息。网络信息体系中的各种异构信息被建模为一个多维张量,异构信息之间丰富的语义关系建模为张量中的元素。提出有效的张量分解方法,将不同类型的信息对象一次性划分到不同的簇中。在人工合成的数据集和真实数据集上的实验结果表明:该聚类方法可以很好地处理网络信息体系中的异构信息聚类问题,并且性能优于现有的聚类方法。 A tensor decomposition based clustering method was proposed for heterogeneous information in networks.This clustering method can cluster multiple types of objects and rich semantic relationships simultaneously.The multi-types of information objects in networks were modeled as a high-dimensional tensor,and the rich semantic relationships among different types of objects were modeled as elements in the tensor.Based on an effective tensor decomposition method,the multi-types of objects were partitioned into different clusters simultaneously.The experimental results on both synthetic datasets and real-world dataset show that the proposed clustering method can deal with the heterogeneous information in networks well,and can outperform the state-of-the-art clustering algorithms.
作者 吴继冰 黄宏斌 邓苏 WU Jibing;HUANG Hongbin;DENG Su(Science and Technology on Information Systems Engineering Laboratory,College of Systems Engineering, National University of Defense Technology,Changsha 410073,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2018年第5期146-152,170,共8页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61401482 61401483)
关键词 聚类 异构信息 张量分解 信息网络 clustering heterogeneous information tensor decomposition information networks
  • 相关文献

同被引文献32

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部