期刊文献+

结合爬山法的模糊C均值彩色图像分割方法 被引量:2

Fuzzy C-means Color Image Segmentation Algorithm Combining Hill-climbing Algorithm
下载PDF
导出
摘要 采用传统的模糊C均值聚类(FCM)算法进行彩色图像分割存在聚类数的选取、初始聚类中心的确定、迭代过程中的大计算量及后处理等问题。在对上述问题进行研究的基础上,针对传统FCM聚类分割时初始值选取方法的盲目性和随机性,为了更准确地自动获取待分割图像聚类的初始参数,提出了一种结合爬山法的模糊C均值彩色图像分割方法(HFCM),该方法可根据待分割图像的三维颜色直方图自适应地获取FCM算法的初始聚类中心及聚类数目,同时提出一种最频滤波与区域合并相结合的新的后处理策略,有效消除了小的空间区域。实验表明,相对于传统FCM,该图像分割方法的速度较快,并且分割结果更接近人类分割效果。 There are some problems with the color image segmentation technology based on traditional Fuzzy C-means clustering algorithm,such as the selection of the initial category number,the determinated of the initial centroids,large amount of calculation in clustering process and post-processing.Based on the research of these problems,according to the shortage of random initialization in traditional FCM,and for getting more accurate initialization automatically,this paper proposed a clustering segmentation method combining Hill-climbing for color image(HFCM),which can generate the initial centroids and the number of clusters adaptively according to the three dimensional histogram of the image.In addition,a new post-processing strategy which combined the most frequency filter and region mergeing was introduced to effectively eliminate small spatial regions.Experiments show that the proposed segmentation algorithm achieves high computational speed,and its segmentation results are close to human perceptions.
作者 贾娟娟 贾富杰 JIA Juan-juan;JIA Fu-jie(College of Technology and Engineering,Lanzhou University of Technology,Lanzhou 730050,China;School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China)
出处 《计算机科学》 CSCD 北大核心 2018年第B11期247-250,255,共5页 Computer Science
关键词 模糊C均值聚类算法 彩色图像分割 爬山法 三维颜色直方图 Fuzzy C-means clustering algorithm Color image segmentation Hill-climbing algorithm Global three-dimensional color histogram
  • 相关文献

参考文献3

二级参考文献27

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 3刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 4叶秀清,顾伟康,肖强.快速模糊分割算法[J].模式识别与人工智能,1996,9(1):66-70. 被引量:27
  • 5CHEN T-W, CHEN Y-L, CHIEN S-Y. Fast image segmentation based on K-means clustering with histograms in HSV color space [ C]//MMSP 2008: Image/Video Processing and Coding. [ S. l. ] : IEEE, 2008:322-325.
  • 6CHENG YIZONG. Mean shift, mode seeking, and clustering[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8) :790 -799.
  • 7ALAIN T, PHILIPPE C. Regions adjacency graph applied to color image segmentation[ J]. IEEE Transactions on Image Processing, 2000, 9(4) : 735 -744.
  • 8MARTIN D, FOWLKES C, MALIK J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [ C ]// International Conference on Computer Vision, 2001. Washington, DC: IEEE Computer Society, 2001,2:416 - 423.
  • 9DENG Y, MANJUNATH B S. Unsupervised segmentation of colortexture regions in images and video[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(8):800- 810.
  • 10DORIN C, PETER M. Mean shift: A robust approach toward feature space analysis[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :603 -619.

共引文献355

同被引文献35

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部