期刊文献+

基于NL-Means的双水平集脑部MR图像分割算法 被引量:3

Double Level Set Algorithm Based on NL-Means Denosing Method for Brain MR Images Segmentation
下载PDF
导出
摘要 针对脑部MR图像中通常伴有灰度不均、高噪声的缺点,且传统水平集无法有效分割的问题,提出了一种基于NL-Means的双水平集算法。首先,利用改进型NL-Means算法对带有噪声的医学图像进行去噪处理,再通过双水平集算法对图像进行分割,提取多目标区域,为了去除医学图像中灰度不均对分割效果的影响,所提算法引入了偏移场拟合项,进一步改进了双水平集模型,进而对去噪图像分割效果进行了优化处理。实验结果表明,所提算法能有效地解决灰度不均与高噪声的问题,能够将伴有灰度不均的高噪声脑部MR图像完全分割出来,从而获得预期的分割效果。 This paper proposed a novel double level set algorithm based on NL-Means denosing method for brain MR image segmentation,which has a large amount of noise and complicated background,and cannot be separated completely by traditional level set.First of all,this algorithm gets the denoised image by analyzing the image with NL-Means denosing method.Then,the algorithm identifies denoised image by segmenting the analyzed results in terms of improved double level set model.In order to deal with the effect of intensity inhomogeneities on the medical image,the algorithm introduces a bias fitting term into the improved double level set model and optimizes the denosing method result.The experimental result shows that the algorithm can reduce the problems of intensity inhomogeneities and noise,can separate brain MR image including intensity inhomogeneities and noise completely,and can obtain the expected effect of segmentation.
作者 唐文杰 朱家明 徐丽 TANG Wen-jie;ZHU Jia-ming;XU Li(School of Information Engineering,Yangzhou University,Yangzhou,Jiangsu 225127,China)
出处 《计算机科学》 CSCD 北大核心 2018年第B11期256-258,277,共4页 Computer Science
基金 国家自然科学基金(61273352 61573307 61473249 61473250)资助
关键词 医学图像 NL-Means 双水平集 偏移场矫正 Medical image NL-Means Double level set Bias correction
  • 相关文献

参考文献2

二级参考文献15

  • 1Wang Y, Adali T, Kung S Y, et al. Quantification and segmentation of brain tissues from MR images: a probabilistic neural network approach [ J ]. IEEE Transactions on Image Processing, 1998,7 ( 8 ) : 1165-1181.
  • 2Belaroussi B, Milles J, Carme S, et al. Intensity non-uniformity correction in MRI: Existing methods and their validation [ J ]. Medical Image Analysis,2006,10(2) :234-246.
  • 3Wells III,Gfimson W ,Kikinis R,et al. Adaptative segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 2002, 15(4) :429-442.
  • 4Van Leemput K, Maes F, Vandenneulen D, et al. Automated model-based bias field correction of MR images of the brain[ Jl. IEEE Transactions on Medical Imaging,2002,18 (10) :885-896.
  • 5Mohamed Ahmed, Sameh Yamany, Nevin Mohamed, et al. A modified fuzzy C-Means algorithm for bias field estimation and seglnentation of MRI data [ J ]. IEEE Transactions on Medical Imaging,2002,21 (3) :193-199.
  • 6Li C,Huang R,Ding Z,et al. A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity [ C ]//Proceedings of Medical Image Computing and Computer Aided Intervention (MICCAI, 2008 ). New York City, USA : Springer Press,2008 : 1083-1091.
  • 7Wang L, Li C, Sun Q, et al. Brain MR image segmentation using local and global intensity fitting active contours/surfaces [ C ]// Proceedings of Medical Image Computing and Computer Aided Intervention ( MICCAI, 2008 ). New York City, USA : Springer Press,2008 : 384-392.
  • 8Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model [ J ]. Computer Vision,2002,50 (3) :271-293.
  • 9Li C,Gatenby C,Wang L, et al. A robust parametric method for bias field estimation and segmentation of MR images [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition ( CVPR, 2009 ). Miami, Florida, USA: IEEE Press, 2009:218-223.
  • 10Li C,Xu C,C, ui C,et al. Level set evolution without re-initialization: a new variational formulatlon[ C ]//Pmceedings d IEEE Conference on Computer Vision and Pattern Recognition ( CVPR, 20(15 ). San Diego, CA, USA :Springer Press ,2005:430-436.

共引文献4

同被引文献19

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部