期刊文献+

基于PageRank和谱方法的个性化推荐算法 被引量:7

Personalized Recommendation Algorithm Based on PageRank and Spectral Method
下载PDF
导出
摘要 传统的PageRank推荐算法的可扩展性较差。针对这一问题,提出融合PageRank和谱方法的个性化推荐算法。通过在PageRank算法迭代过程中加入候选集节点数来控制迭代的次数,同时利用阈值来修剪参与迭代的节点个数,从而得到候选节点集;采用谱聚类对候选集进行排序,归一化候选节点邻接矩阵,使用矩阵的特征值与特征向量来评估图中节点与目标节点之间的距离,从而产生最终的推荐列表。实验结果表明,所提推荐算法在保证推荐质量的前提下,提高了处理效率。 Traditional PageRank recommendation algorithm is less scalable.To solve this problem,a personalized recom-mendation algorithm based on PageRank and spectral method was proposed.The number of iterations is controlled by adding the number of nodes in the PageRank algorithm to obtain the candidate set,threshold is ued to trim the number of nodes participating in the iteration to get the candidate node set.Spectral clustering is utilized to sort the candidate nodes.The candidate node adjacency matrix is normalized,and eigenvalues and eigenvectors of matrices are used to eva-luate the distance between nodes and target nodes in a graph.At last,a final list of recommendations is produced.Experi-mental results show that the proposed recommendation algorithm improves the processing efficiency on the premise of ensuring the recommendation quality.
作者 常家伟 戴牡红 CHANG Jia-wei;DAI Mu-hong(College of Information Science and Engineering,Hunan University,Changsha 410082,China)
出处 《计算机科学》 CSCD 北大核心 2018年第B11期398-401,共4页 Computer Science
基金 湖南省自然科学基金(2015JJ2027)资助
关键词 推荐系统 PAGERANK 谱聚类 Recommendation system PageRank Spectral clustering
  • 相关文献

参考文献2

二级参考文献76

  • 1Lazer D, Pentland A, Adamie L, et al. Computational social science [J]. Science, 2009, 323:721-723.
  • 2Rciic F, Rokach L,Shapira B. Introduction to recommender systems handbook [ M ]. Recommender Systems Handbook, New York, USA: Springer, 2011: 1-35.
  • 3Resnick P, Iacovou N, et al. GroupLcns: An Open Architecture for Collaborative Filtering of Netnews[ C]// Proceedings of ACM Conference on Computer Supported Cooperative Work, CSCW, 1994 : 175-186.
  • 4Ahdomavieius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transaction on Knowledge and Data Engineering, 2005, 17 ( 6 ) : 734-749.
  • 5Resnick P, Varian H R, Recommender systems [ J]. Communications of the ACM, 1997, 40(3): 56-58.
  • 6Sugiyama K, Hatano K, Yoshikawa M. Adaptive Web Search based on User Profile Constructed without Any Effort from Users [ C ]//Proceeding of the 13th international conference on World Wide Web, ACM New York, NY, USA, 2004: 675-684.
  • 7Schaffer J B, Konstan J, Riedl J. Recommender systems in e-commerce [ C ]//Proceedings of the 1st ACM Conference on Electronic Commerce. Denver, USA, 1999: 158-166.
  • 8Mooney R J, Roy L. Content-based book recommending using learning for text categorization[ C]//Proceedings of 5th ACM Conference on Digital Libraries. San Antonio, USA, 2002: 195-204.
  • 9Pazzani M J, Billsus D. Content-Based Recommendation Systems [ J]. LectureNotes in Computer Science, 2007, 4321: 325-341.
  • 10Abbasi R, Grzegorzek M, Staab S, Using colors as tags in folksonomies to improve image classification [ C ]//Proceedings of the Third International Conference on Semantics and Digital Media Technologies, Koblenz, Germany, 2008 : 13-34.

共引文献53

同被引文献65

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部