期刊文献+

脉搏传播时间与血压关系的长时记忆性分析 被引量:2

Long Term Memory Analysis of Relationship Between Pulse Transit Time and Blood Pressure
下载PDF
导出
摘要 相对于柯氏音法,通过脉搏传播时间估算血压不仅更为便携,还可以实现血压的连续测量。但是因为现有研究建立的线性方程的有效时间较短,所以脉搏传播时间随血压变化的机制有待进一步的分析。文中以MIMIC数据库中的10例数据为研究对象,从长时记忆的角度,以符号化和复杂网络为主要研究手段分析了血压与脉搏传播时间的关系。对网络的度分布进行了分析,结果显示收缩压网络度分布具有幂率性,验证了收缩压脉搏波传播时间关系序列的长时记忆。对血压网络节点变化的分析显示,相对于舒张压,收缩压网络的节点数能较快达到饱和,反映了某种核心状态对血压脉搏传播时间关系的持续影响。研究结果可以为通过脉搏波传播时间更精确地无创连续测量血压提供支持。 Compared with the Korotkoff sound method,estimating blood pressure via pulse transit time is more portable and can be implemented for continuous measurement.However,the effective time of the linear equation established by the existing research is short,the mechanism of pulse transit time changing with the blood pressure needs further analysis.Based on 10 groups of data in MIMIC database,the relationship between blood pressure and pulse transit time was analyzed from the perspective of long-term memory,taking symbolization and complex network as the main research means.The degree distribution of the SBP network shows power-law characteristics,thus indicating the long term me-mory of the SBP-PTT time series.The node variation of the SBP network can be faster to achieve the saturation state compared with DBP network,which reflects the continuous influence of a certain core state on the SBP-PTT relationship.The results can provide a basis for the more accurate and noninvasive continuous measurement of blood pressure through the pulse wave transit time.
作者 李晗 赵海 陈星池 林川 LI Han;ZHAO Hai;CHEN Xing-chi;LIN Chuan(School of Electronic and Information Engineering,Liaoning University of Technology,Jinzhou,Liaoning 121000,China;School of Computer Science&Engineering,Northeastern University,Shenyang 110819,China)
出处 《计算机科学》 CSCD 北大核心 2018年第B11期569-572,共4页 Computer Science
基金 国家自然科学基金资助项目(61101121)资助
关键词 脉搏传播时间 血压 复杂网络 长时记忆性 符号化 Pulse wave transit time Blood pressure Complex network Long term memory Symbolization
  • 相关文献

参考文献1

二级参考文献14

  • 1Tang X Z, Tracy E R, Boozer A D, et al. Symbol Sequence Statistics in Noisy Chaotic Signal Reconstruction. Physical Review E, 1995, 51(5):3871-3889
  • 2Shalizi C R, Crutchfield J P. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. Journal of Statistical Physics, 2001, 104(3/4): 817-879
  • 3Lin J, Keogh E, Loncell S, et al. A Symbolic Representation of Time Series, with Implications for Streaming Algorithms // Proc of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, USA, 2003:2-11
  • 4Ray A. Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection. Signal Processing, 2004, 84(7): 1115-1130
  • 5Chin S C. Real Time Anomaly Detection in Complex Dynamic Systems. Ph. D Dissertation. Park, USA:The Pennsylvania State University. Depatment of Electrical Engineering, 2004
  • 6Crutchfield J P. The Calculi of Emergence: Computation, Dynamics and Induction. Physica D, 1994, 75(1/2/3):11-54
  • 7Crutchfield J P, Young K. Inferring Statistical Complexity. Physical Review Letters, 1989, 63(2):105-108
  • 8Perry N, Binder P M. Finite Statistical Complexity for Sofic Systems. Physical Review E, 1999, 60(1): 459-463
  • 9Hyndman R J. Time Series Data Library [DB/OL]. [2006-04-06]. http://www-personal.buseco.monash.edu. au/~hyndman/TSDL
  • 10Weigend A., The Santa Fe Time Series Competition Data [DB/OL]. [2006-04-06]. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe. html

共引文献22

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部