摘要
运用截断方法研究了一类椭圆方程在加权Sobolev空间中解的存在性.主要采用Marcinkiewicz估计,在得到逼近解序列的截断函数先验估计的基础上,通过选取适当的检验函数,对逼近解序列做合适的估计,以此证明重整化解的存在性.
In this paper,we consider the following nonlinear elliptic equation with degenerate coercivity and lower order term in the setting of the weighted Sobolev space.We investigate the existence of the renormalized solutions in W 1,p 0(Ω,ω)by the truncation method.With the help of Marcinkiewicz estimate,through some priori estimates for the sequence of solutions of the approximate problem,we prove that u n converges in measure.Then we choose suitable test functions for the approximate equation and obtain the needed estimates.Finally,through a limit process,we obtain the existence of renormalized solutions to problem.
作者
代丽丽
DAI Lili(Institute of Mathematics,Tonghua Normal University,Tonghua 134002,Jilin Province,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2018年第6期673-678,共6页
Journal of Zhejiang University(Science Edition)
基金
吉林省科技厅青年科研基金项目(20160520103JH)
吉林省教育厅科研项目(吉教科合字[2015]第441号)
关键词
退化椭圆方程
截断函数
加权SOBOLEV空间
权函数
degenerate elliptic equation
truncation function
weighted Sobolev space
weighted functions