期刊文献+

求解非埃尔米特正定方程组的广义LHSS迭代法 被引量:3

Generalized LHSS method for non-Hermitian positive definite linear systems
下载PDF
导出
摘要 基于矩阵的埃尔米特和反埃尔米特分解,李良等给出了一类求解非埃尔米特正定方程组的LHSS迭代法,在系数矩阵的埃尔米特和非埃尔米特之间进行了非对称迭代,在较松弛的约束条件下即可获得收敛结果.本文对该方法做进一步研究,给出了一类求解非埃尔米特正定方程组的广义LHSS迭代方法.数值结果表明,系数矩阵经恰当分解,在处理某些问题时广义LHSS迭代法优于HSS迭代法. Based on the Hermitian and skew-Hermitian splitting,LI et al proposed a lopsided HSS iteration method for solving non-Hermitian positive definite linear systems which conducts an asymmetric iteration between Hermitian part and skew-Hermitian part.The authors proved that LHSS method converges to the unique solution with a loose constriction of the parameter.To further study LHSS method,a generalized LHSS method is proposed here,which implements an asymmetric iteration between two positive definite parts of the non-Hermitian positive definite coefficient matrix.Theoretical analysis shows that this method converges to the unique solution of the non-Hermitian positive definite linear systems when the parameter satisfies some requirement dominated by the positive definite parts.Experiments show that compared with suitable splitting of coefficient matrix,the generalized LHSS method has better performance than HSS method when dealing with certain linear systems.
作者 初鲁 鲍亮 董贝贝 CHU Lu;BAO Lian;DONG Beibei(School of Science,East China University of Science and Technology,Shanghai 200237,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期694-697,706,共5页 Journal of Zhejiang University(Science Edition)
关键词 非埃尔米特正定方程组 LHSS迭代法 谱半径 non-Hermitian positive definite linear systems LHSS iteration method spectrum radius
  • 相关文献

参考文献1

二级参考文献47

  • 1S.R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15 (1999) 41-93.
  • 2O. Axelsson, A generalized SSOR method, BIT, 12 (1972) 443-467.
  • 3O. Axelsson, Z.-Z. Bai and S.-X. Qiu, A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part, Numer. Algorithms, 35 (2004) 351-372.
  • 4K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming, Stanford University Press, Stanford, CA, 1958.
  • 5Z.-Z. Bai, Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl. Math. Comput., 109 (2000) 273-285.
  • 6Z.-Z. Bai, Optimal parameters in the HSS-like methods for saddle point problems, Numer. Linear Algebra Appl., 16 (2009) 447-479.
  • 7A. Bendali, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method, Math. Comp., 43 (1984) 29-68.
  • 8M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008) 598-618.
  • 9Z.-Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010) 93-111.
  • 10Z.-Z. Bai, M. Benzi and F. Chen, On preconditioned MHSS iteration methods for complex sym- metric linear systems, Numer. Algorithms, 56 (2011) 297-317.

同被引文献11

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部