期刊文献+

基于深度学习人脸识别技术在高校课堂点名中的设计及实现 被引量:7

Design and Implementation of Face Recognition Based on Deep Learning in College Classroom Roll Call
下载PDF
导出
摘要 深度学习是目前人工智能领域采用的最先进的的AI学习方法之一,并在各个相关领域都取得了飞速的发展,尤其是在人脸识别领域的应用.深度学习是模拟人类视觉感知神经系统的认知学习,能够获得更具表征力的高层特征,可以用来解决人脸识别中面部变化分布,详细了解人脸图像规律,学习速度快.文章介绍了深度学习方法,人脸识别的核心技术等,分析研究了人脸深度学习技术在高校课堂点名中的应用. Deep learning is one of the most advanced AI learning methods currently used in the field of artificial intelligence,and has achieved rapid development in various related fields,especially in the field of face recognition.Deep learning is a cognitive learning that simulates the human visual perception of the nervous system.It can obtain more representative high-level features.It can be used to solve the face change distribution in face recognition,understand the law of face image in detail,and learn quickly.This paper introduces the outline of deep learning,the core technology of face recognition etc.,and analyzes the application of face in-depth learning technology in college classroom roll call.
作者 陈章斌 CHEN Zhang-bin(Institute of Technology,Fuzhou University of International Studies and Trade,Changle 350202,Fujian,China)
出处 《兰州文理学院学报(自然科学版)》 2018年第6期68-71,77,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 深度学习 人脸识别 课堂点名 deep learning face recognition classroom roll call
  • 相关文献

参考文献4

二级参考文献15

  • 1吴业福,李波,师宇,吴超仲,刘钢.人脸检测与实时跟踪在机动车道路考试系统中的应用研究[J].交通信息与安全,2013,31(1):113-116. 被引量:6
  • 2李小丽,陈锻生.基于LLE+LDA的人脸识别方法[J].计算机应用,2007,27(B12):85-86. 被引量:4
  • 3Lowe D G.Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004 (2) : 91-110.
  • 4Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[J].Proceedings of ICPR. Jerusalem, Irsael:IEEE, 1994(10): 761-767.
  • 5Turk M, pentland m.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience, 1991(1):71-86.
  • 6Lee T S,Mumford D. Uierarchical Bayesian inference in the visual cortex[J].JOSA A, 2003(7):1434-1448.
  • 7Lee T S, Mumford D, Romero R, et al.The role of the primary visual cortex in higher level vision[J].Vision research, 1998 (15) : 2429-2454.
  • 8Hinton G E.Yraining products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002 (8): 1771- 1800.
  • 9Hinton G E, Zemel R S. Auto encoders, minimum description length, and nelmholtz free energy: Advances in Neural Information Processing Systems,1994[C]// Burlington ,USA: Morgan Kaufmann, 1994.
  • 10Hinton G E, Osindero S The Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006(7): 1527-1554.

共引文献69

同被引文献56

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部