期刊文献+

对共享单车资源配置与调度的建议——以北京市为例

Suggestions on Allocation and Scheduling of Shared Bicycle Resources: In the Case of Beijing
下载PDF
导出
摘要 针对共享单车不科学、不合理的资源配置与管理调度增加交通拥堵情况、阻碍自身健康有序发展的问题,采用LOF算法对北京市共享单车数据进行预处理的基础上,利用支持向量机回归预测北京不同区域的共享单车静态需求量,结合层次分析法分析居住区、教学区、商业区等不同区域共享单车静态需求数量的分配权重;考虑动态时间因素和单车转运的运输成本、建筑分布以及总体均衡等问题,建立共享单车动态需求下合理调度的双目标优化模型,并利用模拟退火算法求解,得出合理调度方案,最后给出共享单车的经济效益分析,给出相应的参考建议。 To solve the problems in the development of the shared bicycle industry such as unscientific and unreasonable resource allocation and poor management and scheduling which lead to exacerbated traffic congestion and chaotic development situation of this industry,this paper uses the LOF algorithm to preprocess the data of the shared bicycles in Beijing,predicts the static demand of shared bicycles in different regions of Beijing using support vector machine regression,and analyzes the distribution weight of the static demand of shared bicycles in the residential,teaching and commercial areas.Next,considering the factors of dynamic time and transportation cost,building distribution and overall balance in bicycle transportation,it establishes a two-objective optimization model for rational scheduling under the dynamic demand of shared bicycles which is then solved using the simulated annealing algorithm to obtain a reasonable scheduling scheme.Finally,the economic benefits of the sharing bicycles are analyzed,with the corresponding reference and suggestions given.
作者 张若菡 何颖 Zhang Ruohan;He Ying(School of Mathematics&Statistics,Hunan Normal University,Changsha 410006;School of Economics,Xuzhou University of Technology,Xuzhou 221008,China)
出处 《物流技术》 2018年第11期64-70,共7页 Logistics Technology
基金 江苏省博士后基金项目"纵向数据半变系数模型的统计推断及应用研究"(1601076B)
关键词 共享单车 资源调度 支持向量机回归 模拟退火 双目标规划 shared bicycle resource scheduling support vector machine regression simulated annealing two-objective programming
  • 相关文献

参考文献6

二级参考文献24

  • 1方志耕,刘思峰.基于区间灰数列的GM(1,1) 模型(GMBIGN(1,1))研究[J].中国管理科学,2004,12(z1):130-134. 被引量:6
  • 2杨一文,杨朝军.基于支持向量机的金融时间序列预测[J].系统工程理论方法应用,2005,14(2):176-181. 被引量:20
  • 3CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5陈永义,熊秋芬.支持向量机方法应用教程[M].北京:气象出版社,2011:2.
  • 6J Mercer.Function of Positive and Negative Type, and their Connection with the Theory of Integral Equations [A].Philosophical Transactions of the Royal Society of London[C].London: The Royal Society, 1909,209:415 -446.
  • 7Satosi Watanabe. Pattern Recognition: Human and Mechanical [M].New York:The Association for Computing Machinery, 1985.
  • 8Rong Zhang, A I Rudnicky.A Large Scale Clustering Scheme for Kernel K-means [A].16th International Conference on Pattern Recognition [C]. Canada, 2002,(4): 289-292.
  • 9城市交通网站.部分城市基础数据[EB/OL].http://www.chinautc.com/information/newsclass.asp?classid=31&parentid=23.
  • 10周涛,张艳宁,袁和金,陆惠玲,邓方安.粗糙核k-means聚类算法[J].系统仿真学报,2008,20(4):921-925. 被引量:15

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部