摘要
人工智能已经成为人们研究的热点,特别是BP神经网络,在计算机领域得到了广泛的应用。但是传统的BP神经网络预测模型存在一定的缺陷,为了进一步提升超市大米日销售预测的准确性,急需构建一种更好的优化算法。本文将应用遗传算法优化BP神经网络,并对超市大米日销售进行预测。仿真结果表明,遗传BP神经网络可以更加精准地预测超市大米日销售。
Artificial intelligence has become a research focus in computer field,especially BP neural network.But BP neural network has some defects.This text will make use of GA-BP neural network for forecasting the daily rice sales in the supermarket to improve the accuracy of daily rice sales forecast in the supermarket.The simulation results show that GA-BP neural network has higher accuracy.
作者
王锦
赵德群
Wang Jin;Zhao Dequn(Department of Information Science,Beijing University of Technology,Beijing 100124,China)
出处
《信息与电脑》
2018年第21期42-44,共3页
Information & Computer
关键词
遗传算法
BP神经网络
遗传BP神经网络
超市大米日销售
预测
genetic algorithm
BP neural network
GA-BP neural network
daily rice sales in the supermarket
forecast