期刊文献+

Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications 被引量:7

Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications
下载PDF
导出
摘要 Emergence from anesthesia(AE) is the ending stage of anesthesia featuring the transition from unconsciousness to complete wakefulness and recovery of consciousness(RoC). A wide range of undesirable complications, including coughing, respiratory/cardiovascular events, and mental status changes such as emergence delirium, and delayed RoC, may occur during this critical phase. In general anesthesia processes, induction and AE represent a neurobiological example of "hysteresis". Indeed, AE mechanisms should not be simply considered as reverse events of those occurring in the induction phase. Anesthesia-induced loss of consciousness(LoC) and AE until RoC are quite distinct phenomena with, in part, a distinct neurobiology. Althoughanaesthetics produce LoC mostly by affecting cortical connectivity, arousal processes at the end of anesthesia are triggered by structures deep in the brain, rather than being induced within the neocortex. This work aimed to provide an overview on AE processes research, in terms of mechanisms, and EEG findings. Because most of the research in this field concerns preclinical investigations, translational suggestions and research perspectives are proposed. However, little is known about the relationship between AE neurobiology, and potential complications occurring during the emergence, and after the RoC. Thus, another scope of this review is to underline why a better understanding of AE mechanisms could have significant clinical implications, such as improving the patients' quality of recovery, and avoiding early and late postoperative complications. Emergence from anesthesia(AE) is the ending stage of anesthesia featuring the transition from unconsciousness to complete wakefulness and recovery of consciousness(RoC). A wide range of undesirable complications, including coughing, respiratory/cardiovascular events, and mental status changes such as emergence delirium, and delayed RoC, may occur during this critical phase. In general anesthesia processes, induction and AE represent a neurobiological example of "hysteresis". Indeed, AE mechanisms should not be simply considered as reverse events of those occurring in the induction phase. Anesthesia-induced loss of consciousness(LoC) and AE until RoC are quite distinct phenomena with, in part, a distinct neurobiology. Althoughanaesthetics produce LoC mostly by affecting cortical connectivity, arousal processes at the end of anesthesia are triggered by structures deep in the brain, rather than being induced within the neocortex. This work aimed to provide an overview on AE processes research, in terms of mechanisms, and EEG findings. Because most of the research in this field concerns preclinical investigations, translational suggestions and research perspectives are proposed. However, little is known about the relationship between AE neurobiology, and potential complications occurring during the emergence, and after the RoC. Thus, another scope of this review is to underline why a better understanding of AE mechanisms could have significant clinical implications, such as improving the patients' quality of recovery, and avoiding early and late postoperative complications.
出处 《World Journal of Methodology》 2018年第2期9-16,共8页 世界方法学杂志
关键词 DELIRIUM ANESTHESIA ISOFLURANE PROPOFOL CONSCIOUSNESS Awareness ELECTROENCEPHALOGRAPHY Delirium Anesthesia Isoflurane Propofol Consciousness Awareness Electroencephalography
  • 相关文献

同被引文献68

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部