摘要
结合动态目标的不确定性,构建了动态环境下多无人机协同搜索问题模型,并基于半随机式搜索策略的人工蜂群算法求解该模型。利用双重进化的特点,改进了插入点算子和逆转序列算子,在需要进行两点操作的搜索过程中,随机选取一点,另一点通过遍历可行解来确定最优解的位置。最后在某海域岛礁间距离之和的解空间维度上进行交叉搜索,并应用到局部搜索过程中构成双重进化,实验结果验证了所提出算法的有效性以及解决多无人机调度问题的可行性。
Combine the uncertainty of dynamic targets,a multi-UAV reconnaissance scheduling problem model is constructed under dynamic environment,and the model is solved by the artificial bee colony algorithm based on the semi-random search strategy.Take advantage of the characteristics of dual evolution,the insertion point operator and reverse sequence operator are improved,in the search process of requiring two points operating,one point is randomly selected and the other point is selected by traversing the feasible solution space.Finally,cross search is done in the sum of the distance between south China sea reefs in the solution space,and applied to the local search process to form dual evolution.Experimental results show the effectiveness and feasibility of the proposed algorithm for solving the multi-UAV reconnaissance scheduling problem.
作者
湛佳
谢文俊
郭庆
毛声
ZHAN Jia;XIE Wen-jun;GUO Qing;MAO Sheng(School of Equipment Management and UAV Engineering,AFEU,Xi’an 710038,China)
出处
《火力与指挥控制》
CSCD
北大核心
2018年第10期25-30,34,共7页
Fire Control & Command Control
基金
航空科学基金(20165596025)
国防预研基金资助项目(2201044)
关键词
无人机
动态环境
双重进化人工蜂群算法
UAV
dynamic environment
double evolutional artificial bee colony algorithm